
Motion planning:
Beyond Navmeshes

CMSC425.01 Spring 2019

Administrivia

• Hw2 questions?

• Project 2a questions?

• Exam review on Thursday

• Grading push this week

Networking and motion: Foreshadowing

• CMSC 425: Lecture 22 Multiplayer Games and Networking
• https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect22-multiplayer.pdf

• Ideas:
• Topology: Centralized server vs. peer to peer?
• Transport level: TCP (validated) vs. UDP (unvalidated)?
• Game objects: How distribution game object data?

What data needs to be where?
Central database?

• Latency: Concern for network delays?
Realtime game: predict motion of other players?

https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect22-multiplayer.pdf

Navigation problems
• Navigating from place to place
• Dense crowd navigation
• Coordinated team movement
• Pursuit
• Moving complex/articulated shape

• Piano movers problem(rigid)
• Skeleton (articulated)

Navmesh

1. Mark navigable space
• Use agent height/width/slope

2. Triangulate navigable area
• Tile with triangles

3. Connect with graph
• Connect in and out points

4. Search with algorithm
• Dijkstra's or A*

Review: smoothing bounding

• Step 2: Simplify boundaries
• Simplify polygon "map"

• Recursive refinement of
straight line

Review of triangulation: how do efficiently?

• Step 3: Triangulate "map"
• Cover with set of triangles

• Bridge holes
• Cut ears (!)

(a) (b)

v0

v1
v2

vi�1

vi+1

vi
ear

(c)

vn

chord

chord
bridging

Beyond Navmesh

Navmesh: moving circle
1. Mark navigable space
• Use agent height/width/slope

2. Triangulate navigable area
• Tile with triangles

3. Connect with graph
• Connect in and out points

4. Search with algorithm
• Dijkstra's or A*

Generalizing: jointed polygon
1. Define a navigable space
• Jointed characters
• Configuration space!

2. Find optimal paths in the
space

3. Create a road network

4. Search the network

Defining robot configuration R

• Multiple degrees of freedom

• 3DOF – translate/rotate ℛ(#, %, &) (region covered by robot)
• 4DOF – translate/rotate/bend ℛ(#, %, &, ()

• 6DOF – rigid object in 3D
• Human – 244

Reference pose

R(1, 3, 0)

R(6, 2, 45�)

45�

R(0, 0, 0)

(a)

Reference pose

R(4, 2, 30�, 60�)

(b)

30�

60�

R(0, 0, 0, 0)

Defining workspace S

• Boundary of space + obstacles
• In same DOF space as robot

• Defines free and forbidden
ranges of values of R

• !"#$$(&, ()
• !"*#+,--$.(&, ()

Motion planning in configuration space

• Path from !, # ∈ %&'(((*, +)
• if we have ℛ(!) → ℛ(#)
• with all configurations in free

space

• One path can be
better than another
based on length,
maximum bend, etc

Free

Forbidden

Workspace

Forbidden

Configuration Space

Free

(Loosely interpreted)

Cfree(R, S)

Cforb(R, S)

(a) (b)

Building configuration space

Robot and obstacle
Workspace

Obstacle

Robot

Step 1: Establish buffer distance
Workspace

Building configuration space

Step 2: Move shape around
obstacle

Step 3: Create extended
obstacle (green) by midpoint

Workspace Workspace

Building configuration space

Step 4: Reduce robot to point
Workspace • Robot becomes point

• Obstacle become C-obstacle

• Path finding reduces to finding a
path for a single point around
extended obstacles

In higher dimensions

Step 6: Rotate and repeat
(0-180 degrees)

Creates solid in 3D space

• ℛ = ($, &, ')
• 3D space
• (Howie Choset CMU)

Workspace

Creating in higher dimensional space

• Expensive!
• 5DOF or 7DOF arm?
• Robot base with arm? 10DOF

• Sample space, fit surface,
approximate

Formalizing: Minkowski sums

• Motivation
• ℛ(#) is region of ℛ translated to p
• % is an obstacle region

• & # = # ∶ ℛ # ∩ % ≠ ∅

Definitions

• Minkowski sum
• ! ⊕ # = % + ' ∶ % ∈ !, ' ∈ #

• Negated region
• −! = −% ∶ % ∈ !

• Sum with point
• ! ⊕ % = !⊕ {%}

Claim: !(#) = # ⊕ (−ℛ)

(a) (b)

P

R

C(P)

P

�R

P � (�R)

R

p
q

r

�r

p

q

• “Proof”:
If robot R intersects obstacle P when
at location q (R(q) in P)
Then we have for r in R that p = q+r

Then we can deduce q = p – r
The points q are those that
compose C(P)

Algorithm: Computing Minowski sum

P

Q

P �Q

p

q

p + q

u1

u2

u3

v4

v1
v2

v3

u1

v1

u2 v2

u3

v3
v4

• Input: two polygons
• Output: polygon of M-sum

• Algorithm:
• Take each edge in CCW direction
• Sort by angle
• Combine

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 2: Game designer draws …

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 3: Grid

(a) (b) (c)

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 4: Multiresolution grid

(a) (b) (c)

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 5: Visibility graph

(a) (b)

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 6: Medial axis (c)

(a) (b) (c)

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 7: Randomized
placement
(sampling)

(a) (b) (c)

new edges

not added

pp

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 8: Rapidly-expanded
Random Trees (RRTs)

(a) (b) (c)

p2

q2

p0

p1

p3

q3

p2

q2

p0

p1
p2

q2

p0

p1

p3

q3

p4

q4

p04

p2

q2

p0

p1

p3

q3

p4

q4

(d)

