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Administrivia

• Hw2 questions?

• Project 2a questions? 

• Exam review on Thursday

• Grading push this week



Networking and motion: Foreshadowing

• CMSC 425: Lecture 22 Multiplayer Games and Networking
• https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect22-multiplayer.pdf

• Ideas:
• Topology: Centralized server vs. peer to peer?
• Transport level: TCP (validated) vs. UDP (unvalidated)?
• Game objects: How distribution game object data?

What data needs to be where?
Central database?

• Latency: Concern for network delays?
Realtime game: predict motion of other players?

https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect22-multiplayer.pdf


Navigation problems
• Navigating from place to place
• Dense crowd navigation
• Coordinated team movement
• Pursuit
• Moving complex/articulated shape

• Piano movers problem(rigid)
• Skeleton (articulated)



Navmesh

1. Mark navigable space
• Use agent height/width/slope

2. Triangulate navigable area
• Tile with triangles 

3. Connect with graph
• Connect in and out points

4. Search with algorithm
• Dijkstra's or A*



Review: smoothing bounding

• Step 2: Simplify boundaries
• Simplify polygon "map"

• Recursive refinement of 
straight line



Review of triangulation: how do efficiently?

• Step 3: Triangulate "map"
• Cover with set of triangles

• Bridge holes
• Cut ears (!)
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Beyond Navmesh

Navmesh: moving circle 
1. Mark navigable space
• Use agent height/width/slope

2. Triangulate navigable area
• Tile with triangles 

3. Connect with graph
• Connect in and out points

4. Search with algorithm
• Dijkstra's or A*

Generalizing: jointed polygon
1. Define a navigable space 
• Jointed characters
• Configuration space!

2. Find optimal paths in the 
space

3. Create a road network

4. Search the network



Defining robot configuration R

• Multiple degrees of freedom

• 3DOF – translate/rotate ℛ(#, %, &) (region covered by robot)
• 4DOF – translate/rotate/bend ℛ(#, %, &, ()

• 6DOF – rigid object in 3D
• Human – 244
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Defining workspace S

• Boundary of space + obstacles
• In same DOF space as robot

• Defines free and forbidden 
ranges of values of R

• !"#$$(&, ()
• !"*#+,--$.(&, ()



Motion planning in configuration space

• Path from !, # ∈ %&'(((*, +)
• if we have ℛ(!) → ℛ(#)
• with all configurations in free 

space

• One path can be
better than another
based on length, 
maximum bend, etc
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Building configuration space

Robot and obstacle
Workspace

Obstacle

Robot

Step 1: Establish buffer distance
Workspace



Building configuration space

Step 2: Move shape around 
obstacle

Step 3: Create extended 
obstacle (green) by midpoint

Workspace Workspace



Building configuration space

Step 4: Reduce robot to point
Workspace • Robot becomes point

• Obstacle become C-obstacle

• Path finding reduces to finding a 
path for a single point around 
extended obstacles



In higher dimensions

Step 6: Rotate and repeat
(0-180 degrees)

Creates solid in 3D space

• ℛ = ($, &, ')
• 3D space
• (Howie Choset CMU)

Workspace



Creating in higher dimensional space

• Expensive! 
• 5DOF or 7DOF arm?
• Robot base with arm? 10DOF

• Sample space, fit surface, 
approximate



Formalizing: Minkowski sums

• Motivation
• ℛ(#) is region of ℛ translated to p
• % is an obstacle region

• & # = # ∶ ℛ # ∩ % ≠ ∅



Definitions

• Minkowski sum
• ! ⊕ # = % + ' ∶ % ∈ !, ' ∈ #

• Negated region
• −! = −% ∶ % ∈ !

• Sum with point
• ! ⊕ % = !⊕ {%}



Claim: !(#) = # ⊕ (−ℛ)
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• “Proof”:
If robot R intersects obstacle P when 
at location q (R(q) in P)
Then we have for r in R that p = q+r

Then we can deduce q = p – r
The points q are those that 
compose C(P)



Algorithm: Computing Minowski sum
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• Input: two polygons
• Output: polygon of M-sum

• Algorithm:
• Take each edge in CCW direction
• Sort by angle
• Combine



Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?



Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 2: Game designer draws …



Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 3: Grid 
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Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 4: Multiresolution grid
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Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 5: Visibility graph

(a) (b)



Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 6: Medial axis ( c )
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Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 7: Randomized 
placement
(sampling)
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Finding paths in polygonal configuration 
space
• Version 1: Navmesh
• Others?

• Version 8: Rapidly-expanded 
Random Trees (RRTs)
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