
Intelligent Game Agents
CMSC425.01 Spring 2019

Administrivia

• Exam being graded …

• Project 2b concepts out, write up soon (add animations to 2a)

Today’s questions

How, and why, should you
make game agents intelligent

Thoughts on game AI

• What is game AI for?

Thoughts on game AI

• What is game AI for?

Major game opponents

Individual game units

Richer world of NPCs

Discussion question

• Do you want your opponents to be

Game AI, made better

Humans, through better networked games

What does AI mean here?

• How code Starcraft

Hive mind?

Individual zerg?

What does AI mean here?

• How code Starcraft

Hive mind?
Hard coded?
Not adaptive

Individual zerg?
A* plus "attack"

• Observation:
• Not that intelligent but

powerful gameplay

Review: examples

• A*

• Minowski sum of obstacles

A*

• Pick next node to expand based
on sum of distance so far and
heuristic

A

S

C

T

D

F

HG

EB
3

4

7 3

5

2
6

4

8

8

3

Good heuristics

• For A* to compute correctly the heuristic h(u) must be:

• Admissible: h(u) never overestimates the graph distance from
node u to goal t

• Consistent: h(u') <= delta(u',u'') + h(u’’)

• Goldilocks – heuristics must be not too high, not too low

A

S

C

T

D

F

HG

EB
3

4

7 3

5

2
6

4

8

8

3

H(E)=50

H(D)=8

H(B)=7

H(A)=11

H(G)=8

A

S

C

T

D

F

HG

EB
3

4

7 3

5

2
6

4

8

8

3

H(E)=2

H(D)=8

d(D)+H(D)=10

d(E)+H(E)=10

H(B)=0

H(A)=0

H(G)=0

d(A+H(A)=7

Algorithm: Computing Minowski sum

P

Q

P �Q

p

q

p + q

u1

u2

u3

v4

v1
v2

v3

u1

v1

u2 v2

u3

v3
v4

• Input: two polygons
• Output: polygon of M-sum

• Algorithm:
• Take each edge in CCW direction
• Sort by angle
• Combine

A

b

a c

d

1 2

34

B
e f

gh

CC

B

Finding paths in polygonal configuration
space
• Version 1: Navmesh
• Others?

• Version 8: Rapidly-expanded
Random Trees (RRTs)

(a) (b) (c)

p2

q2

p0

p1

p3

q3

p2

q2

p0

p1
p2

q2

p0

p1

p3

q3

p4

q4

p04

p2

q2

p0

p1

p3

q3

p4

q4

(d)

Decision making

• Reactive decision making: Respond
• Decision trees
• Finite State Machines
• Behavior trees

• Proactive decision making: Plan
• Not this semester
• Can use variation of A* on space of operators on world state
• Robot planning
• Done by game designers implicitly

Decision trees

• Structured if

• Can
• Randomize
• Share subtrees
• Have branching factor > 2

attack

yesno

yesno

noyes

Is enemy visible?

Is enemy < 10 m away?Is enemy audible?

creep

attack move

yesno

Is enemy
on flank?

Finite State Machine
• Organize behaviors in graph
• Set transitions on state of game

On Guard Fight
See small enemy

Run Away

Losing the fight
See big enemy

Escaped

(Start state)

Guard

Fight

Run

enemy

Small

enemy

Big

Losing Escaped

Fight Run – –

Run– – –

– – – Guard

Start

(a) (b)

Finite State Machine
• State can be
• Behavior - character actions
• Emotional state - predisposition (confidence/fear, anger, health,energy)

On Guard Fight
See small enemy

Run Away

Losing the fight
See big enemy

Escaped

(Start state)

Guard

Fight

Run

enemy

Small

enemy

Big

Losing Escaped

Fight Run – –

Run– – –

– – – Guard

Start

(a) (b)

Controlling FSM complexity

• State with branches to many
others

On Guard Fight
Small enemy

Run Away

Losing
Big enemy

Escaped

Get food
Hungry

Full

Get food
Hungry

Full

Get food
Hungry

Full

Controlling FSM complexity

• Hierarchical FSM (StateCharts)
• Superstates +

generalized transitions
• Part of UML (if you don’t know,

look up …) On Guard Fight
Small enemy

Run Away

Losing
Big enemy

Escaped

Guarding

Get food
Hungry

Full

(Start)

Tuning FSMs

• Variations on one character
template
• EG, Orcs in LOTR
• Massive Software
• Each agent owns character profile
• Randomize when populating game

Behavior trees

• Lightweight way to design action plans
• Plan
• Sequence of actions

1) Go to door
2) Use key open door
3) Go through door
• With preconditions

2)* Must have key

Behavior trees

• Lightweight way to design action plans
• Plan
• Sequence of actions

1) Go to door
2) Use key open door
3) Go through door
• With preconditions

2)* Must have key

Behavior trees

• Lightweight way to design action plans
• Plan
• Sequence of actions

1) Go to door
2) Use key open door
3) Go through door
• With preconditions

2)* Must have key

Behavior trees

• Lightweight way to design action plans
• Plan
• Sequence of actions

1) Go to door
2) Use key open door
3) Go through door
• With preconditions

2)* Must have key

patrol attack

move bite

investigate

look around

guard dog:

Sequential AND node

A B C D

evaluate sequentially

(a)
(b)

ok ok fail

fail!

A B C D

fail!

until failure

Sequential OR node

test sequentially

(a) (b)

success!

A B C D A B C D

okfail fail

success

until success

? ?

Goal: Move into room

?

Door wide

open?

Move

into room

Move

to door
?

Move

into room

Door

unlocked?

Open

door

Open

door

Open

door

Open

door

Break down

door

Door

unlocked?

Open

door

Move

into room

Move

to door

