
Meshes and More
CMSC425.01 Spring 2019



Administrivia

• Google form distributed for grading issues

• Final work outlined soon
• Final homework
• Final midterm
• Final project grading standards



Today’s question

How to represent objects



Polygonal meshes

• Standard representation of 3D 
assets

• Questions:
• What data and how stored?
• How generate them?
• How color and render them?



Data structure

• Geometric information
• Vertices as 3D points

• Topology information
• Relationships between vertices
• Edges and faces



Normals and shading – shading equation
• Light equation
• k terms – color of object
• L terms – color of light

• Ambient term - ka La
• Constant at all positions

• Diffuse term - kd (n • l)
• Related to light direction

• Specular term - (v • r)q

• Related to light, viewer direction



Phong exponent

• Powers of cos (v • r)q

• v and r normalized
• Tightness of specular highlights

• Shininess of object



Normals and shading

• Face normal
• One per face

• Vertex normal
• One per vertex. More accurate

• Interpolation
• Gouraud: Shade at vertices, 

interpolate
• Phong: Interpolate normals, shade



Texture mapping

• Vary color across figure
• ka, kd and ks terms 

• Interpolate position inside
polygon to get color

• Not trivial!
• Mapping complex



Bump mapping

• “Texture” map of 
• Perturbed normals (on right)
• Perturbed height (on left)



Summary – full polygon mesh asset

• Mesh can have vertices, faces, edges plus normals
• Material shader can have
• Color (albedo)
• Phong coefficient q
• Normal map
• Texture map
• Bump map
• Height map



How create 3D asset?

• Model by hand
• Model by procedure
• Model by scanning

• Mix all three
• By hand control B-spline surface 

procedure
• Take pictures for texture map, 

bump map



Constructive Solid Geometry (CSG)

• Volume based
• Supports physical and simulation 

of objects
• Heavily used in industry for 

precision and flexibility

• Can output polygonal mesh for 
Unity asset



Boolean operations on primitives

• Union
• Intersection
• Difference
• (and scaling)

• Rectangular blocks
• Spheres
• Cylinders

 �
+

+



Easy CSG intro: Tinkercad

• https://www.tinkercad.com

• Free
• Easy
• Online tutorials
• Can add own procedural 

object code in Javascript!

https://www.tinkercad.com/


CSG tree

• Unevaluated CSG object 
represented as tree

• How determine if point is inside 
object?



CSG tree

• Recursive procedure



CSG problems: boundary issues

A B
A \B (A \B)⇤

(a) (b) (c)

2-dimensional

• Operation produces 2d glitch
• ??



CSG problems: boundary issues

A B
A \B (A \B)⇤

(a) (b) (c)

2-dimensional• Operation produces 2d glitch
• Definitions
• Interior int(A) – surrounded by A
• Exterior ext(A) – no A adjacent
• Boundary bnd(A) – adjacent to both
• Closure(A) = int(A) union bnd(A)

• A* = closure(interior(A))

• A op* B = closure(int(A op B))



Polygonal meshes

• Represents boundary of object

• 2D manifold
• Neighborhood of vertex is 2d

• Constraints:
• No t-junctions
• Only 2 faces/edge
• No points inside polygon

(a)

not a 2-manifold

(b)

2-manifold

(c) (d)

cell complex not a cell complex



Meshlab

• Polygonal mesh editor
• Free
• View, edit, clean up meshes
• Many sophisticated algorithms



Meshes as planar graphs

• Euler’s formula
• ! − # + % = 2

(a) (b) (c)

Vertex Edge Face Triangulation

v = 5
e = 7
f = 4
v � e + f = 2

Euler’s formula



Meshes as planar graphs

• Euler’s formula
• ! − # + % = 2

• Gives upper bounds on # of edges and faces

(a) (b) (c)

Vertex Edge Face Triangulation

v = 5
e = 7
f = 4
v � e + f = 2

Euler’s formula



Data structure again

• Face—vertex representation

• What can you find easily?



Data structure again

• Face—vertex representation

• What can you find easily?
• Traverse vertices on face
• Traverse faces from vertex

• What’s hard to find?



Data structure again

• Face—vertex representation

• What can you find easily?
• Traverse vertices on face
• Traverse faces from vertex

• What’s hard to find?
• Adjacent faces?
• Traverse vertices nearby 

systematically



Winged edge representations

• DECL - doubly-connected edge list 
• Stores directed half-edges
• Flexible, supports easier updates



Winged edge representations

• Vertex v has coordinates plus one link to 
incident edge
• Face f has link to one half edge
• Edge (origin u, destination v) has 
• e.org: e’s origin
• e.twin: e’s opposite twin half-edge
• e.left: the face on e’s left side
• e.next: the next half-edge after e in 

counterclockwise order about e’s left face
• e.prev: the previous half-edge to e in 

counterclockwise order about e’s left face 
(that is, the next edge in clockwise order).



Winged edge representations

• What is …

• e.dest: e’s destination vertex 



Winged edge representations

• What is …

• e.dest: e’s destination vertex 

e.dest ← e.twin.org



Winged edge representations

• What is …

• e.right: the face on e’s right side 



Winged edge representations

• What is …

• e.right: the face on e’s right side 

e.right ← e.twin.left



Winged edge representations

• What is …

• e.onext: the next half-edge that 
shares e’s origin that comes after e in 
counterclock-wise order 

e.onext ← e.prev.twin



Winged edge representations

• What is …

• the previous half-edge that shares e’s 
origin that comes before e in 
counter- clockwise order 

e.oprev ← e.twin.next



Winged edge representations

• Question: how traverse f in ccw order?



Winged edge representations

• Question: how traverse f in ccw order?



Winged edge representations

• Question: how traverse all vertices 
that are neighbors of v in cw order?



Winged edge representations

• Question: how traverse all vertices 
that are neighbors of v in cw order?



In class exercise


