Building your Game

CMSC425.01 Spring 2019

Find your name/group and sit at that table

Administrivia
* Finish group rosters, correct them on Elms

* Get started with Unity
* |nstall Unity
* Find references

* Project 1
e Variation on Roll-A-Ball tutorial

* Today — Questions, rather than activities

Game systems this semester

Processing Unity
* Interactive version of Java * Full game engine
* Used to illustrate concepts e Used for projects and assignments

* Not a game engine but has rich

libraries e https://unity3d.com
* httos://processing.org

@

&)

Today’s questions

|_

real ti

ow do you build a

me,

interactive game?

What are the key elements
of a game engine?

Game 1: Zork

* Early text based game * Q: Can we abstract and

* Text of places and objects write a text game engine?
e Simple command language

* Navigation by text

West of House Score: B Moves: 2

ZORK I: The Great Underground Empire

Copyright <{(c> 1981, 1982, 1983 Infocom, Inc. All rights reserved.
ZORK is a registered trademark of Infocom, Inc.

Revision 88 / Serial numbher 840726

llest of House

You are standing in an open field west of a white house, with a boarded front
door.

There is a small mailbox here.

>open mailbox

Opening the small mailbox reveals a leaflet.

>read leaflet
(Taken>
"WELCOME TO ZORK?

ZORK is a game of adventure, danger, and low cunning. In it you will explore
some of the most amazing territory ever seen by mortals. No computer should be
without onet!"

Game 1: Zork

* Early text based game * Q: Can we abstract and

* Text of places and objects write text game engine?

e Simple command language * Yes

e Need:
* Navigation by text Code engine

ZORK I: The Great Underground Empire Command pa rser

Copyright <{(c> 1981, 1982, 1983 Infocom, Inc. All rights reserved.
ZORK is a registered trademark of Infocom, Inc.

Revision 88 / Serial number 840726 Text flle descriptions

lest of House

lr'lou are standing in an open field west of a white house, with a bhoarded front Graph Of |Ocations
Tﬁg:é is a small mailbox here. .
User item bag
Read/parse/do loop

>open mailbox
Opening the small mailbox reveals a leaflet.

>read leaflet
(Taken>
"WELCOME TO ZORK?

ZORK is a game of adventure, danger, and low cunning. In it you will explore
some of the most amazing territory ever seen by mortals. No computer should be
without onet!"

>

Game 1: Zork 5| | e = 1

* "Interactive fiction" T

i
fi il

N

* Existing text engines: - £ ;
* Adrift, Inform, Quest {‘g

;3 '""E fi
it

Dark
ot ot Ledge in Tuanel
Ledge Rovine
=}
rokano Lara Opeser
Ledpe Focwre
Toapar
B Soone Dess Warth
i ot
Vokens Beidge Yord
View - Sarden
Viewing
? tosge
i W I I C a re (i o voeme ot e - o
— v "
" Srrwam Gardes
* |iear sevall] Seom el
Tan dov am—
) wand we Rosm l
Rosm
== ——
Wby Buby
= Volome
Core Carowrel { tepiery
0 Reom
Corriden

* Emphasis on story and language,
not glitz cd

* The skeleton of a game

]
]

i
G
!

i

Game 2: Pong!

* Flatworm of interactive games

e Simple, but complete
interactive game

* Example in Processing

Game 2: Pong!

* Q: How would you code this?

e What elements needed?

Game 2: Pong!

* Basic game loop

Initialize

do
update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done

Clean up

Game 2: Pong!

* Basic game loop e Update ball
Initialize * Very simple physics
do X += dx;

update ball (physics) y += dy;

update paddle (user input)

if (collide) do something . 5, 3dd acceleration

draw stuff dx += ddx;

until done
https://processing.org/examples/

bouncingball.html

Clean up

https://processing.org/examples/bouncingball.html

Game 2: Pong!

* Basic game loop * Update paddie

Initialize * Poll device — interrogate

do
update ball (physics) if (keyPressed &% keyCode == DOWN)
update paddle (user input) py = constrain(py+2,0,height);

if (collide) do something
draw stuff

until done

Clean up

Two form of user/system input

e Poll device

* Initiate in your code

* Read fixed memory location
updated by system

* Event driven

* Initiated by system
* Not under your control

* You write callback routine to
service event (or event handler)

void mousePressed() {
save("image.jpg");

}

Basic event program In Processing

void setup() { * setup — called once on program
size(400,400); start

}

void draw() { * draw — called every frame (rate

} adjustable)

void mousePressed() {

ellipse(mouseX,mouseY,20,20); * mousePressed — called once

} when mouse is pressed
void keyPressed() {

save("pic.jpg"); * keyPressed — called once when
} key is pressed

Game 2: Pong!

e Basic game loop e if (collide) do something
Initialize * If hit wall or paddle, take action
do

update ball (physics) if (pong.hitLeft()) {

pong.reverseX();

}

update paddle (user input)
if (collide) do something
draw stuff

until done

Clean up

Game 2: Pong!

e Basic game loop e draw stuff
Initialize * Draw the arena, paddle and ball
do

update ball (physics) // draw ball

update paddle (user input) color ¢ = color(255,0,0); // red(RGB)
if (collide) do something fill(c);
draw stuff ellipse(x,y,radius,radius);

until done

Clean up

Unity game loop

Initialize game
do
Physics (+collision)
Input
Game logic(new)
Rendering
GUI rendering
loop
Clean up

-——_—_—_- - - - - —_ —_- — — — — ——————

| OnEnabl I

If the component is created

because of an Instantiate()

Startup {

call, Awake is always called,
and OnEnable is called if the

|
|

new component starts enabled,
i — — = [fStart() has not been called before... :
|

le

FixedUpdate

yield WaitForFixedUpdate

yield null
and
yield WaitForSeconds

LateUpdate

OnWillRenderObject

I yield WaitForEndOfFrame I

Time

* Frame time (not constant)
* Things executed every frame
* Most important is rendering of scene

* Physics time
e Steps in physics simulation
* May run faster than frame time to get physics right (avoid big steps)

* Real time
* System clock
* For syncing music, video, other things that need real time

Game 3: Asteroids!

* More objects
* Ship
Bullets
Asteroids
Enemy ship
GUI: Score, remaining ships

* Q: How upgrade our Pong
game?

\
\
\
\

Game 3: Asteroids!

A\ \4 \4

* Big change: more objects @ @ @ @

* Ship

: istlieerz ds * List of game objects

* Enemy ship * In loop

e GUI: Score, remaining ships e Update all
* Interact! (time expensive)
* Render all

* Q: How upgrade our Pong
game?
* Object list

Game 3: Asteroids!

* More objects Object hierarchy
* Ship * Q: How design inheritance
* Bullets hierarchy for Asteroid game
e Asteroids objects?
* Enemy ship

* GUI: Score, remaining ships

* Q: How upgrade our Pong
game?
* Object list

Unity — not OOP, but Entity-Component

* More like interfaces in Java * Ship

* Implements Draw (Ship shape)

* Implements UserControlledMotion
* Owns Collider component

* Owns Shoot component

* Bullet
* Implements Draw (Bullet shape)
* Implements BallasticMotion
* Owns Collider component

* Asteroid
* Implements Draw (Asteroid shape)
* Implements BallasticMotion
* Owns Collider component

* Score
* Implements Draw (Score shape)
* No collider component, no motion

Scene graph vs. Object list

Object list in Asteroids Scene graph
* All objects are simple, no * Directed graph, compound objects
articulated motion » May share subparts

* Subparts have own displacements

(100,50)

A\ A\ \ \
))))

Per Bullet Asteroid

\d \ A\ \ / s : N\
—) O —

Person2
Ship Bullet Bullet Asteroid -
—— —

son1
Body
(LeftArmJ (RightArm

Model View (MV) and rendering

* Model of object stored View of object rendered

* Circle: (x,y,r,color)
* Location x,y
 Radiusr

Model View (MV) and rendering

* Model of object stored * View of object rendered
*In3D * Render object in 3D (using GPU)
* Store list of vertices and polygons W7 \ L R

i ""“}?{ # 1“*“‘]4 h
i S m M\"{* ’/?iﬁ,'

MR "
Vﬁ,4 mm’

Vertex-Vertex Meshes (VV) L
l_" N "E“fﬂ -drA

Vi

Vertex List :
vO |0,00 |[vivSvdv3ve gu -
. 4
vl 1,00 |v2vBv5vOVv9 \ A K A
ﬁg\ IR
v2 (1,10 |v3v7v6vive 3 \'_ e
v3 (0,10 |v2vBv7vavd ‘E ;
vd |10,0,1 vSvOv3v7 v8
. f
v5 (1,01 |vevlvOv4vE : k> ‘{?‘“AE“
v6 (1,11 |v7v2vivsve - 'y &‘ws""’b

;ggn Wﬂmr

v peo- o
v7 10,11 vdviv2vevE
v8 | .5,.5,1 | vdv5S vev7 .
v ——2

v9 | .5,50 |vOvlv2v3 vl

Independence of model and view

%
 Can render 3D model * In different "
ways

* From different viewpoints
* Eg, split screen simultaneously |
« Change of perspective -

it 5

* (far objects,
less LOD)

Not all game objects are rendered (visible)

* Cameras/lights can move & behave but aren't rendered in game
* Model, no view except in mock up

Scene L B = Hierarchy] -
Textured ¢ | RCB N~ R (axAll N 1| Create » [GrAll Y

Camera2

Camera3
Cube

Mic

Point light

| O Inspector | Lightmapping i.z..]
B @ ¥ Cameral (JStatic
ITag |Lcam ¢ Layer | Detault]|

Model View Controller (MVC) program

* Multi-user game [View }
X

Notify /
* Shared Model/Database [Controller L Pull update
¢
Event
* Different Views \[o J
. E
* Coordinated controllers Controller e

Notlfy

Pull update
e (BTW — this could be
Accounting system, any ‘\[View

multi-user app)

Rendering!

* Convert 3D polygonal model to
2D image

* Do it well
* Do it cheaply

e Do it fast

e How?

Rendering

* Step 1: Elements of model Henrik Liaw o= 3224 Triangles

REPAIRY. [hC 1024x1024 RGB Texture

 Geometry: polygonal mesh
* 3D points
* Topology (graph structure)
e Appearance: color

* Texture
 Procedural shader

e Articulation/motions

© Renzo Thénen
www.hulub.ch

Rendering

e Step 2: Scene elements

far
* Figures plus dlip

e Camera

* Lights

e Skybox '_
viewing O el
frustum near .

clip plane viewpoint

Rendering

 Step 3: software graphics pipeline

* In 3D compute interaction between lights, model camera (math!)

* In 2D do low level rendering to display triangles with color

e @
ol @‘ 1
R
o) o’ -
Vertex , Primitive o Fragment Pixel
i Tesselation) Rasterization : .
processing processing processing processing

Memory (Geometry, Textures, Buffers)

|

Input (Geometry and Attributes)

|

Output (Frame buffers)

Rendering

* Step 4: hardware pipeline

* Push (immense data) to GPU
* Use dedicated bus (north bridge)

* Use GPU memory to pre-load
textures, models, send only
recent motion data

System
Memory

CPU

6.4 GB/sec

6.4 GB/sec

——

North Bridge

8 GB/sec

——

GPU

U up to 35 GB/sec

South Bridge

Graphics
Memory

Other Peripherals

to Display

Summary

 After today you should be able:

1) Explain the separation between game engine and game logic, assets
2) Outline and explain a basic game loop and its stages

3) Distinguish polling and events for user (network, game) input

4) Read and explain an event driven real time graphics program

5) Explain the different clocks used in a game

6) Describe an object list, and a scene graph, for game objects

7) Differentiate between OOP and Entity-Component systems

8) Explain the elements of Model-View-Controller systems (MVC)

Putting it all together

* Key elements of typical game engine?
* Lots of parts to full system!

* Don't memorize diagram, but get
high level view
 Gameplay (high level game loop)
* Model/scene graph+asset management
Physics/collision
Player/network interface
GUI
* Rendering

Source: Jason Gregory
Game Engine Architecture

Game-Specific Subsytems

Weapons |

Power-ups |

Vehicles |

| etc. |

| Puzzles |

Fixed Cameras

Game-Specific Rendering Player Mechanics Game Cameras Al
Water Simulation State machine & || Camera-Relative Scripted /Anim. Goals & Decision Actions

and Rendering Animation Controls (HID) Cameras Making Engine Interface
Terrain Rendering] etc Collision Manifold]| ~ Movement Player-Follow Debug Fly- Sight Traces & || - Path Finding
Camera Through Camera Perception (A" Search)
Front End Gameplay Foundations
Heads-Up Display|| Full-Motion Videol In-Game | High-Level Game Flow System/FSM |
(HUD) (FMV) Cinematics (IGC)
In-Game GUI || 1n-Game Menus |[\Vrappers/Attract | Scripting System |
Mode
Static/World Dynamic Game Real-Time Agent- Even/Messaging World Loading/
Visual Effects Elements Object Model Based Simulation System Streaming
Light Mapping & || HpR Light PRT Lighting . - Hierarchical . . .
Dynamic Shadows| BNE M S bsurf Scatter Skeletal Animation |Object Attachment| Online Multiplayer Audio

Particle & Decal

Post Effects |

Environment |

Animation State

Inverse

Game-Specific

Match-Making &

| DSP/Effects |

Systems Mapping Tree & Layers Kinematics (IK) || Post-Processing Game Mgmt
: — LERP & Animation Sub-skeletal Object Authority 3D Audio Model
Scene Graph / Culling Optimizations Additive Blending| Playback Animation Policy
Spatial Indices || Occlusion & PVS|| Level-of-Detail Game State Audio Playback/
(BSP/Quad-Tree) Culling System Replication Management
Low-Level Renderer Profile & Debug Collision and Physics Human Interface
Materials & [Static and Dynami Cameras Text & Fonts Recording & Forces & Ray/Shapes Devices (HID)
Shaders Lighting Playback Constraints Casting (Queries)
Primitive Viewports & Texture & Debug Drawing Memory & Rigid Bodies Phantoms Game-Specific
Submission Virtual Screens Surface Mgmt. (Lines etc.) Perf. Stats Interface
| Graphics Device Interface | In-Game Menus Shapes/ Physics/Collision Physical Device
or Console Collidables World 1/0
Resources (Game Assets)
3D Model Texture Material Font Skeleton Collision Physics Game et
Resource Resource Resource Resource Resource Resource Parameters World/Map
| Resource Manager |
Core Systems
Module Start-Up Assertions Unit Testing Memory Math Library Strings & Debug Printing Localization Movie
and Shut-Down Allocation Hash String IDs & Logging Services Player
Parser (CSV, Profiling/Stats Engine Random Number Curves & RTTI/Reflection|[Object Handles || Asynchronous || Optimal Media
XML, etc.) Gathering Configuration Generator Surfaces Library || & Serialization Unique IDs File I/O 1/0
Platform Independence Layer
Platform Atomic Data Collections & File System Network Transp. Hi-Res Timer Threading Graphics Physics/Coll
Detection Types Iterators Layer (UDP/TCP| Library Wrappers Wrapper
3rd-Party SDKs
DirectX, OpenGL} Havok, PhysX Boost-+-+ STL/STLPort Al middleware ||~ Granny. Havok Euphoria etc
libgem, Edge, etc ODE, etc. Animation, etc

0s

Drivers

Readings

e David Mount's lectures e Other readings
* This class:

e "Computer Game and Graphics ¢ Unity manual
System Architectures”

e Michael Kissner Gamasutra

 Next class:
* "Intro to Unity"

* Pong code on web site — optional to
read or run, but Processing is fun

https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect02-architecture.pdf
https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect03-unity.pdf
https://docs.unity3d.com/Manual/index.html
https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect03-unity.pdf

Next: Moving on to Unity

* Will refine and explain these ideas through the semester

* You should
* Install Unity
* Do Roll-a-Ball tutorial
 Start working on Project 1

* |deas from today apply Unity

Activity 2: Create a game! (Ice breaker)

* At each table
* Assembly your game packet (sheet, crayons, cards, dice, pieces)
* Read the instructions

* Design a game in 10 minutes
* Round robin — take turns making decisions
* Make rapidly

Activity 4a: Design a computer game

* At each table plan out a game for your team. Answer these questions
(quickly!)

* What type of game? (platformer, FPS, RPG, etc. Multi-player?)

* What design choices?
e Story
* Environment
e Characters
 Gameplay
e Visual look and feel

Activity 4b: Build a computer game

* At each table plan out a game for your team. Answer these questions
(quickly!)

* What platform(s)?

* Any special hardware or peripherals needed?

* What software elements needed?

 Build from scratch or use engine? Which language or engine?

* What assets will you need? How will you make or get them?

