
Building your Game
CMSC425.01 Spring 2019

Find your name/group and sit at that table

Administrivia

• Finish group rosters, correct them on Elms

• Get started with Unity
• Install Unity
• Find references

• Project 1
• Variation on Roll-A-Ball tutorial

• Today – Questions, rather than activities

Game systems this semester

Processing
• Interactive version of Java
• Used to illustrate concepts
• Not a game engine but has rich

libraries
• https://processing.org

Unity
• Full game engine
• Used for projects and assignments

• https://unity3d.com

Today’s questions

How do you build a
real time, interactive game?

What are the key elements
of a game engine?

Game 1: Zork
• Early text based game
• Text of places and objects
• Simple command language
• Navigation by text

• Q: Can we abstract and
write a text game engine?

Game 1: Zork
• Early text based game
• Text of places and objects
• Simple command language
• Navigation by text

• Q: Can we abstract and
write text game engine?
• Yes

Need:
Code engine
Command parser
Text file descriptions
Graph of locations
User item bag
Read/parse/do loop

Game 1: Zork
• "Interactive fiction"
• Existing text engines:
• Adrift, Inform, Quest

• Why care?

• Emphasis on story and language,
not glitz
• The skeleton of a game

Game 2: Pong!

• Flatworm of interactive games
• Simple, but complete

interactive game

• Example in Processing

Game 2: Pong!

• Q: How would you code this?

• What elements needed?

Game 2: Pong!

• Basic game loop
Initialize
do

update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done
Clean up

Game 2: Pong!

• Basic game loop
Initialize
do

update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done
Clean up

• Update ball
• Very simple physics
x += dx;
y += dy;

• Can add acceleration
dx += ddx;
https://processing.org/examples/
bouncingball.html

https://processing.org/examples/bouncingball.html

Game 2: Pong!

• Basic game loop
Initialize
do

update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done
Clean up

• Update paddle
• Poll device – interrogate

if (keyPressed && keyCode == DOWN)

py = constrain(py+2,0,height);

Two form of user/system input

• Poll device

• Initiate in your code
• Read fixed memory location

updated by system

• Event driven

• Initiated by system
• Not under your control
• You write callback routine to

service event (or event handler)

void mousePressed() {
save("image.jpg");

}

Basic event program in Processing

void setup() {
size(400,400);

}
void draw() {
}
void mousePressed() {

ellipse(mouseX,mouseY,20,20);
}
void keyPressed() {

save("pic.jpg");
}

• setup – called once on program
start

• draw – called every frame (rate
adjustable)

• mousePressed – called once
when mouse is pressed

• keyPressed – called once when
key is pressed

Game 2: Pong!

• Basic game loop
Initialize
do

update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done
Clean up

• if (collide) do something
• If hit wall or paddle, take action

if (pong.hitLeft()) {
pong.reverseX();
}

Game 2: Pong!

• Basic game loop
Initialize
do

update ball (physics)
update paddle (user input)
if (collide) do something
draw stuff

until done
Clean up

• draw stuff
• Draw the arena, paddle and ball

// draw ball

color c = color(255,0,0); // red(RGB)
fill(c);

ellipse(x,y,radius,radius);

Unity game loop

Initialize game
do

Physics (+collision)
Input
Game logic(new)
Rendering
GUI rendering

loop
Clean up

Time!

• Frame time (not constant)
• Things executed every frame
• Most important is rendering of scene

• Physics time
• Steps in physics simulation
• May run faster than frame time to get physics right (avoid big steps)

• Real time
• System clock
• For syncing music, video, other things that need real time

Game 3: Asteroids!

• More objects
• Ship
• Bullets
• Asteroids
• Enemy ship
• GUI: Score, remaining ships

• Q: How upgrade our Pong
game?

Game 3: Asteroids!

• Big change: more objects
• Ship
• Bullets
• Asteroids
• Enemy ship
• GUI: Score, remaining ships

• Q: How upgrade our Pong
game?
• Object list

• List of game objects

• In loop
• Update all
• Interact! (time expensive)
• Render all

Ship Bullet Bullet Asteroid

Game 3: Asteroids!

• More objects
• Ship
• Bullets
• Asteroids
• Enemy ship
• GUI: Score, remaining ships

• Q: How upgrade our Pong
game?
• Object list

Object hierarchy
• Q: How design inheritance

hierarchy for Asteroid game
objects?

Unity – not OOP, but Entity-Component

• More like interfaces in Java

• Bullet
• Implements Draw (Bullet shape)
• Implements BallasticMotion
• Owns Collider component

• Asteroid
• Implements Draw (Asteroid shape)
• Implements BallasticMotion
• Owns Collider component

• Ship
• Implements Draw (Ship shape)
• Implements UserControlledMotion
• Owns Collider component
• Owns Shoot component

• Score
• Implements Draw (Score shape)
• No collider component, no motion

Scene graph vs. Object list

Object list in Asteroids
• All objects are simple, no

articulated motion

Scene graph
• Directed graph, compound objects
• May share subparts
• Subparts have own displacements

Ship Bullet Bullet Asteroid

(100,50)

Person1 Person2 Bullet Asteroid

Head Body

LeftArm RightArm

Head Body

Model View (MV) and rendering

• Model of object stored
• Circle: (x,y,r,color)
• Location x,y
• Radius r

• View of object rendered

Model View (MV) and rendering

• Model of object stored
• In 3D
• Store list of vertices and polygons

• View of object rendered
• Render object in 3D (using GPU)

Independence of model and view

• Can render 3D model
• From different viewpoints
• Eg, split screen simultaneously
• Change of perspective

• In different
ways

• At different levels of detail
• (far objects,

less LOD)

Not all game objects are rendered (visible)

• Cameras/lights can move & behave but aren't rendered in game
• Model, no view except in mock up

Model View Controller (MVC) program

• Multi-user game

• Shared Model/Database
• Different Views
• Coordinated controllers

• (BTW – this could be
Accounting system, any
multi-user app)

Controller

Model
Event

View

Notify

Pull update

User

User View

Controller
Notify

Pull update

Event

Rendering!

• Convert 3D polygonal model to
2D image

• Do it well
• Do it cheaply
• Do it fast

• How?

Rendering

• Step 1: Elements of model

• Geometry: polygonal mesh
• 3D points
• Topology (graph structure)

• Appearance: color
• Texture
• Procedural shader

• Articulation/motions

Rendering

• Step 2: Scene elements

• Figures plus

• Camera
• Lights
• Skybox

Rendering

• Step 3: software graphics pipeline
• In 3D compute interaction between lights, model camera (math!)
• In 2D do low level rendering to display triangles with color

Vertex

processing
Tesselation

Primitive

processing
Rasterization

Fragment

processing

Pixel

processing

Memory (Geometry, Textures, Bu↵ers)

Input (Geometry and Attributes) Output (Frame bu↵ers)

Rendering

• Step 4: hardware pipeline

• Push (immense data) to GPU
• Use dedicated bus (north bridge)
• Use GPU memory to pre-load

textures, models, send only
recent motion data

CPU

GPUNorth Bridge

South Bridge

System

Memory

Other Peripherals

Graphics

Memory

to Display

up to 35 GB/sec

6.4 GB/sec

6.4 GB/sec 8 GB/sec

Summary

• After today you should be able:
1) Explain the separation between game engine and game logic, assets
2) Outline and explain a basic game loop and its stages
3) Distinguish polling and events for user (network, game) input
4) Read and explain an event driven real time graphics program
5) Explain the different clocks used in a game
6) Describe an object list, and a scene graph, for game objects
7) Differentiate between OOP and Entity-Component systems
8) Explain the elements of Model-View-Controller systems (MVC)

Putting it all together

• Key elements of typical game engine?
• Lots of parts to full system!
• Don't memorize diagram, but get

high level view
• Gameplay (high level game loop)
• Model/scene graph+asset management
• Physics/collision
• Player/network interface
• GUI
• Rendering

Game-Specific Rendering

Terrain Rendering

Player Mechanics

State machine &

Collision Manifold Movement

Camera-Relative
Controls (HID)Animation

Game-Specific Subsytems

Game Cameras

Fixed Cameras

Player-Follow Debug Fly-

Scripted/Anim.

Cameras

AI

Goals & Decision

Sight Traces & Path Finding

Actions
Engine InterfaceMaking

Through CameraCamera Perception (A⇤ Search)

Weapons Power-ups Vehicles Puzzles etc.

Front End

Heads-Up Display
(HUD)

Full-Motion Video
(FMV)

In-Game

Wrappers/Attract

Mode
In-Game MenusIn-Game GUI

Cinematics (IGC)

Visual E↵ects

Light Mapping &
Dynamic Shadows

HDR Lighting PRT Lighting

Environment
Mapping

Post E↵ects

Subsurf Scatter

Particle & Decal
Systems

World Loading/
Streaming

Static/World

Elements

Dynamic Game
Object Model

Real-Time Agent-

Based Simulation

Even/Messaging
System

Gameplay Foundations

High-Level Game Flow System/FSM

Scripting System

Animation State
Tree & Layers

Inverse
Kinematics (IK)

Game-Specific
Post-Processing

Sub-skeletal
Animation

Animation
Playback

LERP &
Additive Blending

Animation
Decompression

Hierarchical
Object AttachmentSkeletal Animation Online Multiplayer Audio

Object Authority
Policy

Game State
Replication

Match-Making &
Game Mgmt.

Audio Playback/
Management

3D Audio Model

DSP/E↵ects

Scene Graph / Culling Optimizations

Low-Level Renderer

Materials &
Shaders

Static and Dynamic
Lighting

Primitive
Submission

Viewports &

Virtual Screens
Texture &

Surface Mgmt.
Debug Drawing
(Lines etc.)

Cameras Text & Fonts

Skeletal Mesh
Rendering

Ragdoll
Physics

Graphics Device Interface

Recording &
Playback

Profile & Debug

Memory &

Perf. Stats

In-Game Menus
or Console

Forces &
Constraints

Shapes/

Collidables

3D Model
Resource

Parser (CSV,
XML, etc.)

Ray/Shapes
Casting (Queries)

Physics/Collision

World

Phantoms

Collision and Physics

Texture
Resource

Material
Resource

Font
Resource

Skeleton
Resource

Collision
Resource

Physics

Parameters
Game

World/Map
etc.

Resource Manager

Resources (Game Assets)

Human Interface

Devices (HID)

Game-Specific

Interface

Physical Device
I/O

Module Start-Up

and Shut-Down

Profiling/Stats
Gathering

Engine
Configuration

Random Number
Generator

Memory

Allocation

Curves &
Surfaces Library

RTTI/Reflection

& Serialization

Strings &
Hash String IDs

Object Handles
Unique IDs

Debug Printing
& Logging

Asynchronous
File I/O

Localization
Services

Optimal Media
I/O

Movie
Player

Core Systems

Rigid Bodies

Platform Independence Layer

Platform
Detection

Atomic Data
Types

Collections &
Iterators

Network Transp.
Layer (UDP/TCP)

Threading
Library

Graphics
Wrappers

Physics/Coll.
Wrapper

Math LibraryUnit TestingAssertions

File System Hi-Res Timer

3rd-Party SDKs

DirectX, OpenGL
libgcm, Edge, etc

Havok, PhysX

ODE, etc.

Granny, Havok

Animation, etc
Boost++ STL/STLPort AI middleware Euphoria etc.

OS

Hardware (PC, Game Console, etc.)

Drivers

Water Simulation
and Rendering

etc.

Spatial Indices
(BSP/Quad-Tree)

Level-of-Detail
System

Occlusion & PVS
Culling

Source: Jason Gregory
Game Engine Architecture

Readings

• David Mount's lectures
• This class:
• "Computer Game and Graphics

System Architectures"
• Next class:
• "Intro to Unity"

• Pong code on web site – optional to
read or run, but Processing is fun

• Other readings

• Unity manual
• Michael Kissner Gamasutra

https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect02-architecture.pdf
https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect03-unity.pdf
https://docs.unity3d.com/Manual/index.html
https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect03-unity.pdf

Next: Moving on to Unity

• Will refine and explain these ideas through the semester

• You should
• Install Unity
• Do Roll-a-Ball tutorial
• Start working on Project 1

• Ideas from today apply Unity

Activity 2: Create a game! (Ice breaker)

• At each table

• Assembly your game packet (sheet, crayons, cards, dice, pieces)

• Read the instructions

• Design a game in 10 minutes
• Round robin – take turns making decisions
• Make rapidly

Activity 4a: Design a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What type of game? (platformer, FPS, RPG, etc. Multi-player?)
• What design choices?
• Story
• Environment
• Characters
• Gameplay
• Visual look and feel

Activity 4b: Build a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What platform(s)?
• Any special hardware or peripherals needed?
• What software elements needed?
• Build from scratch or use engine? Which language or engine?
• What assets will you need? How will you make or get them?

