Perlin Noise |

CMSC425.01 Spring 2019

Administrivia
* Google form distributed for grading issues

* Final work outlined soon
* Final homework
* Final midterm
* Final project grading standards

Winged edge representations

Vertex v has coordinates plus one link to
incident edge

Face f has link to one half edge
Edge (origin u, destination v) has

e e.org: e’s origin

e.twin: e’s opposite twin half-edge
e.left: the face on €’s left side

e.next: the next half-edge after e in
counterclockwise order about e’s left face

e.prev: the previous half-edge to e in
counterclockwise order about e’s left face
(that is, the next edge in clockwise order).

Winged edge representations

e Question: how traverse all vertices
that are neighbors of v in cw order?

vertexNeighborsCW(Vertex v) {

Edge start = v.incident;

Edge e = start,;

do A
output e.dest; // formally: output e.twin.org
e = e.oprev; // formally: e = e.twin.next

} while (e != start);

‘.,
.
‘.

In class exercise

Given vertex v in a cell complex of a 2-manifold, the link of v is defined to be the edges that
bound the faces that are incident to v, excluding the edges that are incident to v itself. Present a
procedure (in pseudocode) that, given a vertex v of a DCEL, returns a list L consisting of the half
edges of v’s link ordered counterclockwise about v. For example, in the figure below, a possible
output would be (eq,...,e11). (Any cyclic permutation would be correct.)

Today’s question

How do you convert the output of
a pseudo-random number generator into
a smooth, naturalistic function?

Randomness — useful tool

// RandomRain

void setup() {
size(400,400);
background(255);
colorMode(HSB,360,100,100);

}

void draw() {
float x =random(0,400);
float y = random(0,400);
float hue = random(0,60);
fill(hue,100,100);
ellipse(x,y,20,20);

}

How make it natural and pleasing?

* Pure randomness — white noise

e Each data point independent of
rest

0 200 400 600 800 1000

White noise

* Pure randomness — white noise

e Each data point independent of
rest

* Frequency plot uniform

0

-5

-10

-15

20

Intensity (dB)

25

-30

-35

-40
100 1000 10000

Frequency (Hz)

200

400

600

800

1000

Pink noise

* Shaped randomness
— pink noise

* Still independent VTR L Y P TR B
. | {11 L
* Frequency plot 1/f I
‘ (oo
10] |
I T
g-zo l

Brown noise

e Random walk — Brownian noise

* Each point random position from
last (delta¥Y = random(-d,d))

* Frequency plot 1/f2

30000

20000 -

10000 -

0

—10000 |-

—20000 |-

—30000 |-

—40000

Il 1 1 1 | L | 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Colors of noise

Blue White Pink Brown

* Music — close to pink Blue noise (1/f) 0.06
noise 1/f -
. — White noise (1/f°) R
* Natural objects - ! I
close to brown 1/f2 S Pimknoise (1/f) ;
: : 3 \‘MWMWMWWW s
* Some physical objects =< ' m £ 00
. rown noise
— close to white 1/f9 R~ o 1A I
° | | | | | | | L
* Model ObjECt, 0 10 20 30 40 50 60 °0 5000 5000 5000 500
Time (s) Frequency (Hz)

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

Generating 1/fX noise

* Fourier Cosine (Sine) Series Square waves from sine waves

* Frequency set by n sncnro N N T N
= — + Z a, COS (T)

wm

N o=

Generating 1/fX noise

* Fourier Cosine (sine) Series
* Frequency set by n

Fi{x) = -‘?2—0 + i ap COS (n_ZX)
n=1

e Generate random terms of
frequency, phase

* Decrease amplitude (height) as
you increase frequency (n)

\ /\ 1ok

_/ V4

500 Hz

™\
AErA J'nl JA\ l',\'l N\ j/ \ Al(\\l y
' R X 7 v\ v“ 7 \ ‘,1 N\ 7

v

10 20
' '.

Time (milisecands)

More energy higher frequencies => rugged

Application: midpoint displacement

Yo Yn
. . @ = e e e e e e e e e e e -@
* Recursive curve generation Yn /2
. . e
* Given two points: T T
* Create perp bisector i =0 ®=Fmomomomoooooooomoommmmo oo TERe
 Randomly pick tin (-h,h), generate point Yn/a oo
e N T
* Repeat for two new line segments i] === \ N
* Works in 3D s o T
Yn/8 4':// N
P =2 *::P‘/:;" N Jn/8 _»
v _=2r

Application: midpoint displacement

* Recursive curve generation * Question

* Given two points:
» Create perp bisector * How would you tune midpoint
* Repeat for two new line segments less rugged landscapes?

e Works in 3D

Perlin noise

* Ken Perlin 1983
 (a) height map (b) resulting landscape

Perlin noise

e Ken Perlin 1983
 Vary frequency component => control ruggedness

Noise fcn f(x) - interpolating random points

* Generate series Y = Vo, V1, Vay eer Vi)
at uniformly placed X = (xg, X1, X9, ey Xp)

fo(x) = lerp(vi, Yit1, @), where ¢ = |x| and a = x mod 1

Random points Piecewise linear interpolation Cosine interpolation

> -_—

Interpolating weight functions

* Generate series Y = Vo, V1, Vay eer Vi)
at uniformly placed X = (xg, X1, X9, ey Xp)

fo(x) = lerp(vi, Yit1, @), where ¢ = |x| and a = x mod 1

Interpolating weight functions

Piecewise linear interpolation

Cosine — smoother because |t
Slower to leave p0 0\/\/\/\
(b)
Faster to arrive at pl A
- Q

Cosine interpolation

a sin(wt)

* Wavelength: The distance between
successive wave crests

* Frequency: The number of crests
per unit distance, that is, the

i length
reciprocal of the wavelength . wavelengt
 Amplitude: The height of the .
crests amplitude
*a —amplitude \/ \/ \/ \/
v

* w — frequency
¢ 21/ w — wavelength

Periodic noise function

* f(x) defined on range [0,n]
* With £(0) = f(n) o

* Now define

* noise(t) = f(t mod n) 0-

* Not sine — randomly created

e Same curve — self-similar

Frequency octaves

- 1 -1 noise(?)
* noise(t)
* noise(2t) -
* noise(4t) 1
. noise(Zit) 0-

Persistence

N | =

 pnoise(t) p =
* plnoise(2t)
* pnoise(4t)

. pinoise(Zit)

k
perlin(t) = Zpinoise(zit)
i=0

“| perlin(t)

_} noise(t)

% - noise(2t)

% - noise(4t)

= the sum of these

Perlin noise summary

* Perlin noise is
e Constant after generation
* Periodic
* Fractally self-similar

* Unity
public static float PerlinNoise(float x, float y);

returns value in [0,1.0]

(Set y = constants to get 1D function)

https://cpetry.github.io/TextureGenerator-Online/

https://cpetry.github.io/TextureGenerator-Online/

Unity: Scripting Perlin => Terrain

float[,] heights = new float[width, height];
for (int i = 0; i < width; i++) {
for (int k = 0; k < height; k++) {
heights [i,k] = baseHeight + (float)hillHeight *
(Mathf.PerlinNoise (
((float)i / (float)width) * tileSize,

((float)k / (float)height) * tileSize));
}

terrain.terrainData.SetHeights (0, 0, heights);

https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

http://www.google.com/search?q=new+msdn.microsoft.com
https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

Question

* How would the idea of multiple scales apply to
* Generating plants for a game
* Generating cities/towns/etc for a game

* Creating plot variations/bosses

Problem — configuration spaces

* How many dimensions are there in the configuration spaces for each of the following motion-
planning problems. Justify your answer in each case by explaining what each coordinate of the
space corresponds to.

* (i) Moving a cylindrical shape in 3-dimensional space, which may be translated and rotated (see
the figure below (a)).

* (ii) Moving a brick in 3-dimensional space, which may be translated and rotated (see the figure
below (b)).

* (iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated, and

swung open and closed (see the figure below (c)). '
- L~ ¥

(a) (1

—
-/
N—

(c)

Problem — Fractal curve

* Derive an L-system that generates
FL and FR. In particular, please
provide the recursive rules for FL
and FR.

e Consider the curve FL in the limit.
Derive its fractal dimension.

* Each generation distances are
scaled by o0 = 1/5, and each
individual segment of the basic _
length is replaced by 25 segments b
of the next smaller size.

Problem — DECL intersection

* Compute a list L= (el,e2,...,.em)
of edges that intersect a line
segment ab

e Given:

* Faces fa and fb that contain a and
b, respectively

* Function e.cross(a,b) that returns
true/false if edge e crosses ab

