
Perlin Noise I
CMSC425.01 Spring 2019

Administrivia

• Google form distributed for grading issues

• Final work outlined soon
• Final homework
• Final midterm
• Final project grading standards

Winged edge representations

• Vertex v has coordinates plus one link to
incident edge
• Face f has link to one half edge
• Edge (origin u, destination v) has
• e.org: e’s origin
• e.twin: e’s opposite twin half-edge
• e.left: the face on e’s left side
• e.next: the next half-edge after e in

counterclockwise order about e’s left face
• e.prev: the previous half-edge to e in

counterclockwise order about e’s left face
(that is, the next edge in clockwise order).

Winged edge representations

• Question: how traverse all vertices
that are neighbors of v in cw order?

In class exercise

Today’s question

How do you convert the output of
a pseudo-random number generator into

a smooth, naturalistic function?

Randomness – useful tool

// RandomRain
void setup() {

size(400,400);
background(255);
colorMode(HSB,360,100,100);

}

void draw() {
float x = random(0,400);
float y = random(0,400);
float hue = random(0,60);
fill(hue,100,100);
ellipse(x,y,20,20);

}

How make it natural and pleasing?

• Pure randomness – white noise
• Each data point independent of

rest

White noise

• Pure randomness – white noise
• Each data point independent of

rest
• Frequency plot uniform

Pink noise

• Shaped randomness
– pink noise
• Still independent
• Frequency plot 1/f

Brown noise

• Random walk – Brownian noise
• Each point random position from

last (deltaY = random(-d,d))
• Frequency plot 1/f2

Colors of noise

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

• Music – close to pink
noise 1/f
• Natural objects –

close to brown 1/f2

• Some physical objects
– close to white 1/f0

• Model object,

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

Generating 1/fx noise

• Fourier Cosine (sine) Series
• Frequency set by n

Generating 1/fx noise

• Fourier Cosine (sine) Series
• Frequency set by n

• Generate random terms of
frequency, phase
• Decrease amplitude (height) as

you increase frequency (n)

More energy higher frequencies => rugged

Application: midpoint displacement

• Recursive curve generation
• Given two points:
• Create perp bisector
• Randomly pick t in (-h,h), generate point
• Repeat for two new line segments

• Works in 3D

Application: midpoint displacement

• Recursive curve generation
• Given two points:
• Create perp bisector
• Randomly pick t in (-h,h), generate point
• Repeat for two new line segments

• Works in 3D

• Question

• How would you tune midpoint
displacement to get more or
less rugged landscapes?

Perlin noise

• Ken Perlin 1983
• (a) height map (b) resulting landscape

(a) (b)

Perlin noise

• Ken Perlin 1983
• Vary frequency component => control ruggedness

Noise fcn f(x) - interpolating random points

• Generate series ! = #$, #&, #', … , #)
at uniformly placed * = +$, +&, +', … , +)

1

0

(a)

1

0

(b)

1

0

(c)

Random points Piecewise linear interpolation Cosine interpolation

Interpolating weight functions

• Generate series ! = #$, #&, #', … , #)
at uniformly placed * = +$, +&, +', … , +)

1

0

(a) (b)
0 1

1

0
0 1

↵

1� ↵

(1� cos(⇡↵))/2

(cos(⇡↵) + 1)/2

↵ ↵

Interpolating weight functions

1

0

(a)

1

0

(b)

1

0

(c)

Random points Piecewise linear interpolation Cosine interpolation

1

0

(a) (b)
0 1

1

0
0 1

↵

1� ↵

(1� cos(⇡↵))/2

(cos(⇡↵) + 1)/2

↵ ↵

Cosine – smoother because

Slower to leave p0

Faster to arrive at p1

! sin(&')
• Wavelength: The distance between

successive wave crests
• Frequency: The number of crests

per unit distance, that is, the
reciprocal of the wavelength
• Amplitude: The height of the

crests

• ! – amplitude
• & – frequency
• 2*/& – wavelength

wavelength

amplitude

Periodic noise function

• ! " defined	on	range	[0,n]
• With ! 0 = !(3)

• Now	define

• noise 8 = ! 8 9:; 3

• Not sine – randomly created
• Same curve – self-similar

1

0

1

0

1

0

noise(t)

noise(2t)

noise(4t)

Frequency octaves

• noise &
• noise 2&
• noise 4&
• …
• noise 2)&

1

0

1

0

1

0

noise(t)

noise(2t)

noise(4t)

Persistence

• !"noise (! = *
+

• !*noise 2(
• !+noise 4(
• …
• !.noise 2.(

perlin (= 2
.3"

4
!.noise 2.(

1

0

1
2

0

0

noise(t)

1
2 · noise(2t)

1
4 · noise(4t)1

4

1

0

perlin(t) = the sum of these

Perlin noise summary

• Perlin noise is
• Constant after generation
• Periodic
• Fractally self-similar

• Unity
public static float PerlinNoise(float x, float y);

returns value in [0,1.0]

(Set y = constants to get 1D function)

https://cpetry.github.io/TextureGenerator-Online/

https://cpetry.github.io/TextureGenerator-Online/

Unity: Scripting Perlin => Terrain
float[,] heights = new float[width, height];

for (int i = 0; i < width; i++) {
for (int k = 0; k < height; k++) {

heights [i,k] = baseHeight + (float)hillHeight *

(Mathf.PerlinNoise (

((float)i / (float)width) * tileSize,

((float)k / (float)height) * tileSize));
}

}

terrain.terrainData.SetHeights (0, 0, heights);

https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

http://www.google.com/search?q=new+msdn.microsoft.com
https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

Question

• How would the idea of multiple scales apply to

• Generating plants for a game

• Generating cities/towns/etc for a game

• Creating plot variations/bosses

Problem – configuration spaces

• How many dimensions are there in the configuration spaces for each of the following motion-
planning problems. Justify your answer in each case by explaining what each coordinate of the
space corresponds to.

• (i) Moving a cylindrical shape in 3-dimensional space, which may be translated and rotated (see
the figure below (a)).

• (ii) Moving a brick in 3-dimensional space, which may be translated and rotated (see the figure
below (b)).

• (iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated, and
swung open and closed (see the figure below (c)).

Problem – Fractal curve

• Derive an L-system that generates
FL and FR. In particular, please
provide the recursive rules for FL
and FR.
• Consider the curve FL in the limit.

Derive its fractal dimension.
• Each generation distances are

scaled by σ = 1/5, and each
individual segment of the basic
length is replaced by 25 segments
of the next smaller size.

Problem – DECL intersection

• Compute a list L = ⟨e1,e2,...,em⟩
of edges that intersect a line
segment ab
• Given:
• Faces fa and fb that contain a and

b, respectively
• Function e.cross(a,b) that returns

true/false if edge e crosses ab

