Geometry and Geometric
Programming ||

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

* Project 1 submission
* Name as follows: Lastname-Firstname.zip.
* For example, for TA Flores that would be Flores-Alejandro.zip
* From the project folder, delete all folders except for Assets and ProjectSettings.
* Library, Packages, Logs, and Temp are not necessary.

* Lectures online
* Working to improve them — better audio, better handwriting
* Get them up faster

* Looking for additional readings
e http://www.hiteshpatel.co.in/ebook/cg/Computer Graphics C Version.pdf
* https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/Lecture6VectorsAndMatrices4up.pdf

http://www.hiteshpatel.co.in/ebook/cg/Computer_Graphics_C_Version.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/Lecture6VectorsAndMatrices4up.pdf

Today’s question

Computing distances, directions,
orientations

425 1= 427

 We will do considerable math from 427, but not all
Objectives in 425:
* Solve some problems important in game design in particular

* Introduce you to graphics math thinking so you can pick on your own

Review from last class. Questions?

 After today you should be able to use:

1) Affine data types and operations
Vector addition, point subtraction, point-vector additions, etc.

2) Affine/convex combinations

3) Euclidean

1) Dot/inner product
2) Length, normalization, distance, angle, orthogonality

4) Orthogonal projection
5) Doingitin Unity

Review: point-vector line r=p+tv

* Line between p (100,400) and g (400,100)

* (y inverted, O at top)
e Parametricint
* Formula in this case?

Review: point-vector line r=p+tv

* Line between p (100,400) and g (400,100)
* (y inverted, O at top)

* Parametricint

* Formula in this case?

r = (100,400) + t * (300,—300)
Code:

rx = 100 + t * 300;
ry = 400 + t * -300;

Review: point-vector line r=p-+tv
* Processing version

void draw () {
beekgrolndi(255) ;
£ 1 (750 0 0);
dine (0o 400 400 1 00)
ellipse(100,400,20,20);
ellipse(400,100,20,20);
T loal &t = Map(mousexX 0 width: 0 i) ¢
(2700 W (Tt 507
floak x = 100 & & 300~
fTleae v = 400 F s & 600
ellipse(x,y,20,20);

Review: point-vector line r=p+tv

e Unity version Vector3.Lerp

public static Vector3 Lerp(Vector3 a, Vector3 b, float t);

Description

Linearly interpolates between two vectors.

Vector3 pl = new Vector(100f£,400£,0);
Vector3 p2 = new Vector(100f£,400£,0);
Vector3 r = Vector3.lerp(pl,p2,0.5f);

Lerping to chase

* https://processing.org/examples/interpolate.html

* Go 50% of distance to object chased

* Slows down (eases) as you approach

https://processing.org/examples/interpolate.html

Lerping to tween

* Interpolate corresponding points on two shapes
* Processing example on website

* Here polyline: array of points

Question 1: Perpendicular bisector?

* What's the point-vector form of the line perpendicular to a line
segment and through the midpoint? Given p1, p2.

P3

P2

P4

Question 1: Perpendicular bisector?

* What's the point-vector form of the line perpendicular to a line
segment and through the midpoint? Given p1, p2 =(5,10),(30,15)

e Step 1: line pltop2isr(t) =pl +t*(p2-p2) -
* Step 2: Letv=p2-pl
* Step 3: midpointis m = (p1+p2)/2

 Step 4: perp vector is v’ = <-y,x>
e Step5:r'(t)=m+t*V

P4

Question 1: Perpendicular bisector?
* Unity version? Input: p1, p2 Output: p, vin p+tv

e Step 1:linepltop2isr(t)=pl+t*(p2-p2)
* Step 2: Letv=p2-pl

* Step 3: midpointis m = (p1l+p2)/2

e Step 4: perp vector is v’ = <-y,x>

e Step5:r'(t)=m+t*V

Vector2.Perpendicular

public static Vector2 Perpendicular(Vector2 inDirection);

Question 1: Perpendicular bisector?

* Unity version? Input: p1, p2

Step 1: line pltop2isr(t) = pl + t*(p2-p2)
Step 2: Let v =p2-pl

Step 3: midpoint is m = (p1+p2)/2

Step 4: perp vector is v = <-y,x>

Step5:r'(t) =m+t*V

Vector2.Perpendicular

public static Vector2 Perpendicular(Vector2 inDirection);

Output: p, vperp in p+t*verp

Vector2 m = (pl+p2)/2.0f;
Vector2 v = p2 — pl;
Vector2 vperp
= Vector2.perpendicular(v);

// result in m, vperp

Application: midpoint displacement

* Recursive curve generation

* Given two points:
* Create perp bisector
 Randomly pick t, generate point
* Repeat for two new line segments

e Works in 3D

Yo Yn
O ————————— -
Yn/2
e
— O .-:::_________________________:1\‘
Yn/a ,;,,,\\\ \\\\\
g Ne T
] =1 e=="" “Y3n /4 e
N
Y3n /8 o=
/'.-:’_’-‘\x
Yn/ 8_ _‘/f/ N .
| =2 &< -7 AN Yn/8 _m
v \\\ ’//;,/
Ysn /S Ses=Z o

Randomness of t => roughness

Application: midpoint displacement

 Mountain ranges, terrain, coastlines

Back to orthogonal projection

Orthogonal projection: Given a vector w and a nonzero vector v, it is often convenient to
decompose u into the sum of two vectors w = w; + us, such that u; is parallel to v and
s is orthogonal to v.

~—
]
&

B
S
S
<
\V)
IS
|
IS
—

Problem 10: Find orthogonal projection

* Given p =<1,1> and gq=<1,4>, what the orthogonal projection of g
onto p?

Leaving Powerpoint behind ...

* To the Chalkboard!

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

u=1v + w; // vector addition

u=v - w; // vector subtraction

if (u == v || u '=w) { ... } // vector comparison
u=v * 2.0f; // scalar multiplication

v =w/ 2.0f; // scalar division

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y,
and u.z, or through indexing, such as u[0], u[l], and u[2].

The Vector3 class also has the following members and static functions.

float x v.magnitude; // length of v

Vector3 u = v.normalize; // unit vector in v’s direction

float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b Vector3.Dot (u, v); // dot product between u and v

Vector3 ul = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and ¢
be points declared to be of type Vector3. The function Vector3.Lerp is short for linear inter-
polation. It is essentially a two-point special case of a convex combination. (The combination
parameter is assumed to lie between 0 and 1.)

float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination

Readings

* David Mount's lecture on Geometry and Geometric Programming

