
Geometry and Geometric
Programming III

CMSC425.01 Spring 2019

Still at tables …

Administrivia

• Project 1a grades released tonight

• Final project introduction this week

• Hw1 posted to web site, due next Sunday

Final project proposals

Include
• Team members
• Game title
• General description
• Platform and resources
• Coordination

Final project proposals

Include
• Team members
• Game title
• General description
• Platform and resources
• Coordination

Advice
• Teams of 2-3 best, > 4 ask
• Demoable at end of semester
• Do one thing well
• Involve entire team
• Design in layers
• K.I.S.S. (look it up …)

Today’s question

How do we move and orient shapes?

Examples

• Orient cylinder sections of 3D
helix

• Rotate moon around Earth
around sun (multiple motions)

Start with frame of references
Global or local coordinate system in which to define pts and vectors

• 2D • 3D
Y

X

Z

Affine transformations

• Key: translation, rotation, scale

Scaling

• Coordinate free - uniform scale s
! = #$

• Coordinate based
< !&, !(, !) > =< #$&, #$(, #$) > • Scaling sizes and moves

s = 2

Scaling

• Coordinate free – uniform scale s
! = #$

• Coordinate based
< !&, !(, !) > =< #$&, #$(, #$) > • Scaling sizes and moves

s = 2

• Homogeneous coordinates – vector
< !&, !(, !) , 0 > =< #$&, #$(, #$) , 0 >

• Homogeneous coordinates – points (simple scalar * doesn't work)
(!&, !(, !) , 1) = (#$&, #$(, #$) , #)

Scaling

• Matrix form 2D
!" = $%&"

$% =
' 0 0
0 ' 0
0 0 1

• Vector
< !+, !-, 0 > =< '&+, '&-, 1 ∗ 0 >
• Point
(1+, 1-, 1) =< '3+, '3-, 1 ∗ 1 >

• Matrix multiplication on the
right with transpose of vector vt

• Works for vectors and points

• Maintains homogeneous
coordinate w

Scaling – non-uniform

• Matrix form 2D
•

! = #$%

#$ =
&' 0 0
0 &) 0
0 0 1

sx= 1
sy=2

Translation

• Matrix form 2D
•

! = #$%

#$ =
1 0 ()
0 1 (*
0 0 1

• Translate point

(,), ,*, 1) =
1 0 ()
0 1 (*
0 0 1

/)
/*
1

(,), ,*, 1) = /) + (), /* + (*, 1

First version: coordinate based equations

• Translation by v: q = p + T(v) Add vector v
• Scale by a: q = a p Multiply by scalar a
• Rotate by t: (qx,qy) = <px*cos(t) – py*sin(t), px*sin(t) + py*cos(t)>

• Repeated scalings and translations:

• q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on …

• Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

Chalkboard – review all transformations

Defining rotations
• Euler angles Roll – around forward direction
• Angle Axis Pitch – around right direction
• Quaternions Yaw – around up direction

• In Unity
transform.Rotate(x, y, z)) - Euler angles in order z, x, y

Defining rotations
• Angle Axis

Interpolating transformations

• Translation. Easy – move v*dt each frame
• Scale. Easy – scale by s*dt each frame

• Interpolating rotations? Harder

• Interpolate Euler angles? Doesn’t work well
• Interpolate Axis Angle? Better
• Interpolate Quaternions? Best Why Unity uses them.

Activity 4b: Build a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What platform(s)?
• Any special hardware or peripherals needed?
• What software elements needed?
• Build from scratch or use engine? Which language or engine?
• What assets will you need? How will you make or get them?

Readings

• David Mount's lectures on Geometry and Geometric Programming

