Geometry and Geometric
Programming ||

CMSC425.01 Spring 2019

Still at tables ...

Administrivia
* Project 1a grades released tonight

* Final project introduction this week

* Hw1 posted to web site, due next Sunday

Final project proposals

Include

* Team members

* Game title

* General description

* Platform and resources
* Coordination

Final project proposals

Include Advice

e Team members e Teams of 2-3 best, > 4 ask

* Game title * Demoable at end of semester
* General description * Do one thing well

* Platform and resources * Involve entire team

* Coordination e Design in layers

e K.I.S.S. (look it up ...)

Today’s question

How do we move and orient shapes?

Examples

* Rotate moon around Earth * Orient cylinder sections of 3D
around sun (multiple motions) helix

Start with frame of references

Global or local coordinate system in which to define pts and vectors

* 2D * 3D

Affine transformations

* Key: translation, rotation, scale

rotation translation uniform nonuniform reflection shearing
scaling scaling

Scaling

 Coordinate free - uniform scale s
vV =Ssu

 Coordinate based
< Vy, Uy, Uy > =< SUy, SUy, SU, >

»
|

* Scaling sizes and moves

v

Scaling “

* Coordinate free — uniform scale s
v=>5u A

e Coordinate based R

< Uy Uy, Uy 2 =< SUy, SUy, SUZ > o Scaling sizes and moves
* Homogeneous coordinates — vector
< U, vy,vZ,O > =< Sux,suy,suZ,O >

* Homogeneous coordinates — points (simple scalar * doesn't work)
(v, Uy, Uy, 1) = (su,, SUy, SU, S)

v

Scaling

e Matrix form 2D * Matrix multiplication on the
vt = Mut right with transpose of vector vt
s 0 O
* Works for vectors and points
M;=10 s O P
0 0 1
* Vector * Maintains homogeneous

< Uy, Uy, 0 > =< su,,su,,1*0 > coordinate w

* Point
(qx dy) 1) =<sp,, SPy» 11>

Scaling — non-uniform

e Matrix form 2D

v=M,u

oL o
—_ O O

Sx= 1
sy=2

\

\

Translation

e Matrix form 2D * Translate point
v = M,u 1 0 t][Px
(gx 4y, 1) =10 1 Ly | | Py
1 0 ¢t,] 0 0 14L1.
M,=(0 1 ¢,
0 0 1. (qx: dy, 1) — (px + tx»py + ty» 1)

First version: coordinate based equations

e Translation byv: qg=p + T(v) Add vector v
 Scale by a: g=ap Multiply by scalar a
e Rotate by t: (gx,qy) = <px*cos(t) — py*sin(t), px*sin(t) + py*cos(t)>

* Repeated scalings and translations:
eg=a(p+T(V))=a((ap+T(V))+T(v))=and soon ...

* Complex

Second version: Homogeneous coordinates

e Unify all transformations in matrix notation

1 0 o0 o) (1 0 0 tx sx 0 0 0!

0O 1 0 0 0 1 0 ty 0 sy 0 0

0O O 1 0 0 0 1 1tz 0O 0 sz O

0o 0 0 1) 0o 0 0 1, 0o 0 0 1)

Identity Matrix glTranslatef(tx, ty,tz) glScalef(sx,sy,sz)
(1 o 0 0) [cos(d o sind) o) (cos(d) -sin(d) 0 0
0 cos(d) -sin(d) 0 0 1 0 0 sin(d) cos(d) 0O 0O
0 sin(d) cos(d) 0 -sin(d) (0 cos(d) 0 0 0 1 0
o 0 o 1) (o o o 1) Lo 0 0 1)

glRotatef(d,1,0,0) glRotatef(d,0,1,0) glRotatef(d,0,0,1)

Chalkboard — review all transformations

Defining rotations

* Euler angles
* Angle Axis
* Quaternions

* In Unity
transform.Rotate(x, vy, z))

Roll — around forward direction
Pitch — around right direction
Yaw — around up direction

- Euler anglesin order z, x, y

Deflnlﬂg rOtatIOﬂS A Rotation axis
* Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, Vector3 axis);

Description Rotation angle

Creates a rotation which rotates angle degrees around axis.

using UnityEngine;
g yEng >

public class Example : MonoBehaviour

{
void Start()
{
// Sets the transforms rotation to rotate 30 degrees around the y-axis
transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
ks

Interpolating transtformations

* Translation. Easy — move v*dt each frame
* Scale. Easy — scale by s*dt each frame
* Interpolating rotations? Harder

* Interpolate Euler angles? Doesn’t work well
* Interpolate Axis Angle? Better
* Interpolate Quaternions? Best Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour

{

public Transform from;
public Transform to;

private float timeCount = 0.0f;

void Update()

{
transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
timeCount = timeCount + Time.deltaTime;

Activity 4b: Build a computer game

* At each table plan out a game for your team. Answer these questions
(quickly!)

* What platform(s)?

* Any special hardware or peripherals needed?

* What software elements needed?

 Build from scratch or use engine? Which language or engine?

* What assets will you need? How will you make or get them?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

u=1v + w; // vector addition

u=v - w; // vector subtraction

if (u == v || u '=w) { ... } // vector comparison
u=v * 2.0f; // scalar multiplication

v =w/ 2.0f; // scalar division

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y,
and u.z, or through indexing, such as u[0], u[l], and u[2].

The Vector3 class also has the following members and static functions.

float x v.magnitude; // length of v

Vector3 u = v.normalize; // unit vector in v’s direction

float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b Vector3.Dot (u, v); // dot product between u and v

Vector3 ul = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and ¢
be points declared to be of type Vector3. The function Vector3.Lerp is short for linear inter-
polation. It is essentially a two-point special case of a convex combination. (The combination
parameter is assumed to lie between 0 and 1.)

float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination

Readings

* David Mount's lectures on Geometry and Geometric Programming

