
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 2
Computer Game and Graphics System Architectures

Reading: The first half of the lecture is taken from Chapt 1 of Gregory, Game Engine Architecture.
The second half comes from standard computer graphics texts.

Origins of Computer Game Engines: A large computer game is a significant technical under-
taking, involving a large number of interacting components. Of course, not all computer
games require the same level of complexity. Different genres of games require different capa-
bilities. The combination of components used for a simple casual 2-dimensional game is very
different from a high-end AAA 3-dimensional game.

One way to better understand the software structure underlying a generic game is to un-
derstand the structure of a typical game engines. Game engines arose in the mid-1990s. In
particular, the software for the popular game Doom provided a separation between:

• core game components (such as the rendering system, collision detection system, audio
system)

• art assets (models, textures, animations)

• rules of play

This separation made it easy for users to modify, or “modding,” the game, and provided
a framework for adding new elements. This model was extended to other games, including
Quake, Unreal, and Unreal Tournament (all FPS games). At some point, these simple “mod-
ding systems” became generic enough that it was possible to implement a wide variety of
very different games based on a common core set of components, the game engine. Examples
of modern game engines include Unity 3D and Unreal Engine 4 .

Game engines vary along a spectrum of ease of use and flexibility. Simple game engines can
generate only a single type of game (e.g., 2-dimensional games), but are generally easy to
pick up and use. Complex game engines can generate a great variety of games, but it can
take quite a bit of time to master their various capabilities.

The following is a summary of the basic components of a modern game engine. We think of
the engine as being designed in a number of layers, ranging from the lower levels (hardware
and operating system) up to the higher levels (game specific entities like rules). Here is a
summary of the levels, from low to high. These are illustrated in the figure below.

System: This includes low-level software for interacting with the operating system on which
the game engine runs as well as the target system on which the game executes. Tar-
get systems can include general personal computers (running, say, Microsoft Windows,
Linux, or Mac OS), game consoles (e.g., XBox, Playstation, Wii), or mobile devices (e.g.,
hand-held game consoles, tablets, and smart phones).

Third-Party SDKs and Middleware: These are libraries and sofware development toolk-
its (SDKs), usually provided from a third party. Examples include graphics (e.g.,
OpenGL and DirectX), physics (e.g., Havok, PhysX, and Bullet), basic algorithms and
data structures (e.g., Java Class Library, C++ STL, Boost++), character animation
(e.g., Granny), networking support (e.g., Unix sockets).

Lecture 2 1 Spring 2018

https://unity3d.com/
https://www.unrealengine.com/


CMSC 425 Dave Mount & Roger Eastman

Game-Specific Rendering

Terrain Rendering

Player Mechanics

State machine &

Collision Manifold Movement

Camera-Relative
Controls (HID)Animation

Game-Specific Subsytems

Game Cameras

Fixed Cameras

Player-Follow Debug Fly-

Scripted/Anim.

Cameras

AI

Goals & Decision

Sight Traces & Path Finding

Actions
Engine InterfaceMaking

Through CameraCamera Perception (A∗ Search)

Weapons Power-ups Vehicles Puzzles etc.

Front End

Heads-Up Display

(HUD)
Full-Motion Video

(FMV)
In-Game

Wrappers/Attract

Mode
In-Game MenusIn-Game GUI

Cinematics (IGC)

Visual Effects

Light Mapping &

Dynamic Shadows
HDR Lighting PRT Lighting

Environment
Mapping

Post Effects

Subsurf Scatter

Particle & Decal
Systems

World Loading/

Streaming

Static/World

Elements

Dynamic Game

Object Model

Real-Time Agent-

Based Simulation

Even/Messaging

System

Gameplay Foundations

High-Level Game Flow System/FSM

Scripting System

Animation State
Tree & Layers

Inverse
Kinematics (IK)

Game-Specific

Post-Processing

Sub-skeletal

Animation

Animation
Playback

LERP &
Additive Blending

Animation
Decompression

Hierarchical
Object AttachmentSkeletal Animation Online Multiplayer Audio

Object Authority

Policy

Game State
Replication

Match-Making &

Game Mgmt.

Audio Playback/

Management

3D Audio Model

DSP/Effects

Scene Graph / Culling Optimizations

Low-Level Renderer

Materials &

Shaders

Static and Dynamic

Lighting

Primitive

Submission

Viewports &

Virtual Screens

Texture &
Surface Mgmt.

Debug Drawing

(Lines etc.)

Cameras Text & Fonts

Skeletal Mesh
Rendering

Ragdoll

Physics

Graphics Device Interface

Recording &

Playback

Profile & Debug

Memory &

Perf. Stats

In-Game Menus

or Console

Forces &

Constraints

Shapes/

Collidables

3D Model

Resource

Parser (CSV,

XML, etc.)

Ray/Shapes

Casting (Queries)

Physics/Collision

World

Phantoms

Collision and Physics

Texture

Resource

Material

Resource

Font

Resource

Skeleton

Resource

Collision

Resource

Physics

Parameters

Game
World/Map

etc.

Resource Manager

Resources (Game Assets)

Human Interface

Devices (HID)

Game-Specific

Interface

Physical Device

I/O

Module Start-Up

and Shut-Down

Profiling/Stats

Gathering

Engine

Configuration
Random Number

Generator

Memory

Allocation

Curves &
Surfaces Library

RTTI/Reflection

& Serialization

Strings &

Hash String IDs

Object Handles

Unique IDs

Debug Printing

& Logging

Asynchronous

File I/O

Localization

Services

Optimal Media

I/O

Movie
Player

Core Systems

Rigid Bodies

Platform Independence Layer

Platform

Detection

Atomic Data
Types

Collections &

Iterators

Network Transp.

Layer (UDP/TCP)

Threading

Library

Graphics

Wrappers

Physics/Coll.

Wrapper

Math LibraryUnit TestingAssertions

File System Hi-Res Timer

3rd-Party SDKs

DirectX, OpenGL

libgcm, Edge, etc

Havok, PhysX

ODE, etc.

Granny, Havok

Animation, etc
Boost++ STL/STLPort AI middleware Euphoria etc.

OS

Hardware (PC, Game Console, etc.)

Drivers

Water Simulation
and Rendering

etc.

Spatial Indices

(BSP/Quad-Tree)
Level-of-Detail

System
Occlusion & PVS

Culling

Source: Jason Gregory

Game Engine Architecture

Lecture 2 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Platform Independence Layer: Since most games are developed to run on many different
platforms, this layer provides software to translate between game specific operations and
their system-dependent implementations.

Core System: These include basic tools necessary in any software development environ-
ment, including assertion testing, unit testing, memory allocation/deallocation, math-
ematics library, debugging aids, parsers and serializers (e.g., for xml-based import and
export), file I/O, video playback.

Resource Manager: Large graphics programs involve accessing various resources, such as
geometric models for characters and buildings, texture images for coloring these geomet-
ric models, maps representing the game’s world. The job of the resource manager is to
allow the program to load these resources. Since resources may be compressed to save
space, this may also involve decompression.

Rendering Engine: This is one of the largest and most complex components of any real-
time 3-dimensional game. This involves all aspects of drawing, and may involve close
interaction with the graphics hardware, or graphics processing unit (GPU), for the sake
of enhanced efficiency.

Low-Level Renderer: This comprises the most basic elements of producing images.
Your program interacts with the GPU by asking it to render objects. Each object
may be as simple as a single triangle but is more typically a mesh consisting of many
triangular/polygonal elements. Objects are specified according to their coordinates
in 3-dimensional space. Your program also informs the GPU what colors (or what
image textures) to apply to these objects, where lights are positioned, and where
the camera is positioned.
It is then the job of the GPU to perform the actual rendering (projection, coloring,
shading) of the objects. In particular, it determines where each object projects
onto the 2-dimensional image plane, which objects are visible and which are hidden
from view, what is the color and brightness of each object. Your program needs to
convey all this information to the GPU. This also includes elements like displaying
text messages and subdividing the window into subwindows (called viewports) for
the purposes of showing status information or maps. (Further details are provided
later in this lecture.)

Graphics Device Interface: Since the graphics device requires updating 30–100 times
per second, but some operations (such as displaying messages to the user) occurs at
a significantly different time scale (of multiple seconds), these components shield the
programmer from some of the low-level timing issues when dealing with the graphics
system.

Scene Graph: Game entities are naturally organized into hierarchical structures. This
is true for dynamic and static objects. For example, a human body consists of a
head, torso, arms, legs; an arm consists of a hand, lower-arm, and upper-arm; a
hand consists of fingers. Thus, there is a natural structure in the form of a rooted
tree.
In general, all the entities of the games world can be represented in a large tree,
where the root represents the entire world, and the nodes of the tree implicitly
represent the subtrees that are descended from these nodes. This makes it possible

Lecture 2 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

to perform operations easily on an entire portion of the tree. For example, we could
“render the objects rooted at node u” or “rotate the object rooted at node v.” We
can also create multiple instances, as in “create 200 instances of the zombie object
at node z.”
This software component is responsible for creating, modifying, rendering, manipu-
lating, and deleting elements of the scene graph. Another feature of using a scene
graph is that it allows us to remove, or cull, entities that are not visible to the cam-
era. For example, if the camera is located in a room represented by some node v, we
need only render the objects lying within this room or that are visible through the
room’s doors and windows. Because game worlds are so large and complex, efficient
rendering demands that we only attempt to draw the things that might be visible
to the camera.

Visual Effects: This includes support for a number of complex effects such as:

• particle systems (which are used for rendering smoke, water, fire, explosions)

• decal systems (for painting bullet holes, damage scratches, powder marks from
explosions, foot prints, etc)

• complex lighting, shadowing, and reflections

Others: This includes visual elements of the user interface, such as displaying menus
or debugging aids (for the developer) and video playback for generating the back
story.

Collisions and Physics: These components simulate the movement of objects over time,
detect when objects collide with one another, and determine the appropriate response in
the event of a collision (like knocking down the houses where the little pigs live). Except
in very simple physical phenomena, like a free-falling body, physical simulation can be
very difficult. For this reason, it is often handled by a third-party physics SDK.

Animation: While the game may direct a character to move from one location to another,
the job of the animation system is to make this motion look natural, for example, by
moving the arms and legs in a manner that is consistent with normal walking behavior.
The typical process for most animals (including humans) involves developing a skeletal
representation of the object and wrapping flesh (which is actually a mixture of skin
and clothing) around this skeleton. The skeleton is moved by specifying the changes
in the angles of the various joints. This approach is called a skin and bones represen-
tation. Another issue is blending between animations, such as smoothly transitioning
from standing to walking to running animations.

Input Handlers: These components process inputs from the user, including keyboard, mouse,
and game controller inputs. Some devices also provide feedback to users (such as the
vibration in some game controllers). Modern vision based systems, such as the XBox
Kinect, add a whole new level of complexity to this process.

Audio: Audio components handle simple things like playback for background music, explo-
sions, car engines, tire squealing, but they may also generate special audio effects, such
as stereo effects to give a sense of location, echo effects to give a sense of context (inside
versus outside), and other audio effects (such as creating a feeling of distance by filtering
out high-frequency components).

Lecture 2 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Multiplayer/Networking: Multiplayer and online games require a number of additional
supporting components. For example, multiplayer games may have a split-screen ca-
pability. Online games require support for basic network communication (serialization
of structures into packets, network protocol issues, hiding network latency, and so on).
This also includes issues in the design of game servers, such as services for maintaining
registered users and their passwords, matching players with one another, and so on.

Gameplay Foundation System: The term gameplay refers to the rules that govern game
play, that is, the player’s possible actions and the consequences of these actions. Since
this varies considerably from one game to another, designing a system that works for
a wide variety of games can be quite daunting. Often, these systems may be designed
to support just a single genre of games, such as FPS games. There are a number of
subcomponents:

Game Worlds and Object Models: This constitutes the basic entities that make up
the game’s world. Here are some examples:

• static background objects (buildings, terrain, roads)

• (potentially) dynamic background objects (rocks, chairs, doors and windows)

• player characters (PCs) and non-player characters (NPCs)

• weapons and projectiles

• vehicles

• graphics elements (camera and lights)

The diversity of possible game objects is a major challenge to programmers trained
in object-oriented methods. Objects share certain universal qualities (e.g., they can
be created and destroyed), common qualities (e.g., they can be rendered), and more
specialized qualities (e.g., gun-like objects can be shot, chair-like objects can be sat
on).

Event System: Game objects need to communicate with one another. This is often
handled by a form of message passing. When a message arrives, we can think of it as
implicitly signaling an event to occur, which is to be processed by the entity. Game
objects can register their interest in various events, which may affect their behavior.
(For example, characters need to be made aware of explosions occurring in their
vicinity. When such an explosion occurs, the system informs nearby characters by
sending them a message...“you’re toast, buddy.”)

Scripting System: In order to allow game developers to rapidly write and test game
code, rather than have them write in a low-level programming language, such as
C++, it is common to have them produce their code in a scripting language, like
Python. A sophisticated scripting system can handle the editing of scripts and
reloading a script into a game while it is running.

Artificial Intelligence: These components are used to control the behavior of non-
player characters. They are typically modeled as AI agents. As we will discuss
later, an agent is an object that can sense its environment, maintain a memory (or
state), and can respond in potentially complex ways depending on the current input
and state. One of the elements that we can lump under the AI topic is navigation
(although it may not involve very much “intelligence”). This deals with computing

Lecture 2 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

shortest paths for both player and non-player characters to move from one location
to another while avoiding obstacles or achieving other objectives (e.g., staying out
of sight of the enemy in a military game).

Game Specific Systems: This is a catch-all for any components that are so specific to
a given game that they don’t fall into one of the other categories. This may include
aspects like the mechanics controlling a player’s state, the algorithms by which a camera
moves throughout the world, the specific goals of the game’s non-player characters, the
properties of various weapons, and so on.

Interactive 3-dimensional Graphics: (Optional material)

In order to get a quick jump into game development, we will start by discussing the basic
elements of interactive computer graphics systems. This will require that we understand a
bit about how graphics processing units work and will lead us eventually into a discussion of
OpenGL.

Anyone who has played a computer game is accustomed to interaction with a graphics system
in which the principal mode of rendering involves 3-dimensional scenes. Producing highly
realistic, complex scenes at interactive frame rates (at least 30 frames per second, say) is
made possible with the aid of a hardware device called a graphics processing unit, or GPU for
short. GPUs are very complex things, and we will only be able to provide a general outline
of how they work.

Like the CPU (central processing unit), the GPU is a critical part of modern computer
systems. (See Fig. 1 for a schematic representation.) Because of its central importance, the
GPU is connected to the CPU and the system memory through a high-speed data transfer
interface, which is current systems architecture terminology, is called the north bridge. The
GPU has its own memory, separate from the CPU’s memory, in which it stores the various
graphics objects (e.g., vertex coordinates and textures) that it needs in order to do its job.
The GPU is highly parallel, and it has a very high capacity connection with its memory. Part
of this memory is called the frame buffer, which is a dedicated chunk of memory where the
pixels associated with your monitor are stored.

Traditionally, GPUs are designed to perform a relatively limited fixed set of operations, but
with blazing speed and a high degree of parallelism. Modern GPUs are programmable, in that
they provide the user the ability to program various elements of the graphics process. For
example, modern GPUs support programs called vertex shaders and fragment shaders, which
provide the user with the ability to fine-tune the colors assigned to vertices and fragments.

Recently there has been a trend towards what are called general purpose GPUs (GPGPUs),
which can perform not just graphics rendering, but general scientific calculations on the GPU.
Since we are interested in graphics here, we will focus on the GPUs traditional role in the
rendering process.

The Graphics Pipeline: The key concept behind all GPUs is the notion of the graphics pipeline.
This is conceptual tool, where your user program sits at one end sending graphics commands
to the GPU, and the frame buffer sits at the other end. A typical command from your
program might be “draw a triangle in 3-dimensional space at these coordinates.” The job of
the graphics system is to convert this simple request to that of coloring a set of pixels on your

Lecture 2 6 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

CPU

GPUNorth Bridge

South Bridge

System

Memory

Other Peripherals

Graphics

Memory

to Display

up to 35 GB/sec

6.4 GB/sec

6.4 GB/sec 8 GB/sec

Fig. 1: Architecture of a simple GPU-based graphics system. (Adapted from NVIDIA GeForce
documentation.)

display. The process of doing this is quite complex, and involves a number of stages. Each
of these stages is performed by some part of the pipeline, and the results are then fed to the
next stage of the pipeline, until the final image is produced at the end.

Broadly speaking the pipeline can be viewed as involving a number of stages (see Fig. 2).
Geometric objects, called primitives, are introduced to the pipeline from your program. Ob-
jects are described in terms of vectors in 3-dimensional space (for example, a triangle might
be represented by three such vectors, one per vertex).

Vertex
processing

Tesselation
Geometry

processing

Fragment

processing

Fragment

rendering

Vertex/Primitive Data

Transformed
geometry

Mesh data Fragments

Texture
sampler

Texture data

Fig. 2: Stages of the graphics pipeline.

Tesselation: Converts higher-order primitives (such as surfaces), displacement maps, and
mesh patches to 3-dimensional vertex locations and stores those locations in vertex
buffers, that is, arrays of vertex data.

Vertex processing: Vertex data is transformed from the user’s coordinate system into a
coordinate system that is more convenient to the graphics system. For the purposes
of this high-level overview, you might imagine that the transformation projects the
vertices of the three-dimensional triangle onto the 2-dimensional coordinate system of
your screen, called screen space.

Lecture 2 7 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Geometry processing: This involves a number of tasks:

• Clipping is performed to snip off any parts of your geometry that lie outside the
viewing area of the window on your display.

• Back-face culling removes faces of your mesh that lie on the side of an object that
faces away from the camera.

• Lighting determines the colors and intensities of the vertices of your objects. Light-
ing is performed by a program called a vertex shader, which you provide to the
GPU.

• Rasterization converts the geometric shapes (e.g., triangles) into a collection of pixels
on the screen, called fragments.

Texture sampling: Texture images are sampled and smoothed and the resulting colors are
assigned to individual fragments.

Fragment Processing: Each fragment is then run through various computations. First,
it must be determined whether this fragment is visible, or whether it is hidden behind
some other fragment. If it is visible, it will then be subjected to coloring. This may
involve applying various coloring textures to the fragment and/or color blending from
the vertices, in order to produce the effect of smooth shading.

Fragment Rendering: Generally, there may be a number of fragments that affect the color
of a given pixel. (This typically results from translucence or other special effects like
motion blur.) The colors of these fragments are then blended together to produce the
final pixel color. Fog effects may also be involved to alter the color of the fragment. The
final output of this stage is the frame-buffer image.

Lecture 2 8 Spring 2018


