
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 4
Geometry and Geometric Programming

Geometry for Game Programming and Graphics: For the next few lectures, we will discuss
some of the basic elements of geometry. There are many areas of computer science that
involve computation with geometric entities. This includes not only computer graphics, but
also areas like computer-aided design, robotics, computer vision, and geographic information
systems. While software systems like Unity provide support to do geometry for you, there
are good reasons for learning this material. First, for those of you who will go on to design
the successor to Unity, it is important to understand the fundamentals underlying gometric
programming. Second, as a game programmer, you will find that there things that Unity
cannot help with. In such cases, you will need to write scripts to do the geometry yourself.

Computer graphics deals largely with the geometry of lines and linear objects in 3-space,
because light travels in straight lines. For example, here are some typical geometric problems
that arise in designing programs for computer graphics.

Transformations: You are asked to render a twirling boomerang flying through the air. How
would you represent the boomerang’s rotation and translation over time in 3-dimensional
space? How would you compute its exact position at a particular time?

Geometric Intersections: Given the same boomerang, how would you determine whether
it has hit another object?

Orientation: You have been asked to design the AI for a non-player agent in a flight combat
simulator. You detect the presence of a enemy aircraft in a certain direction. How should
you rotate your aircraft to either attack (or escape from) this threat?

Change of coordinates: We know the position of an object on a table with respect to a
coordinate system associated with the table. We know the position of the table with
respect to a coordinate system associated with the room. What is the position of the
object with respect to the coordinate system associated with the room?

Reflection and refraction: We would like to simulate the way that light reflects off of shiny
objects and refracts through transparent objects.

Such basic geometric problems are fundamental to computer graphics, and over the next few
lectures, our goal will be to present the tools needed to answer these sorts of questions. There
are various formal geometric systems that arise naturally in game programming and computer
graphics. The principal ones are:

Affine Geometry: The geometry of simple “flat things”: points, lines, planes, line segments,
triangles, etc. There is no defined notion of distance, angles, or orientations, however.

Euclidean Geometry: The geometric system that is most familiar to us. It enhances affine
geometry by adding notions such as distances, angles, and orientations (such as clockwise
and counterclockwise).

Projective Geometry: In Euclidean geometry, there is no notion of infinity (in the same
way that in standard arithmetic, you cannot divide by zero). But in graphics, we often
need to deal with infinity. (For example, two parallel lines in 3-dimensional space can

Lecture 4 1 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

meet at a common vanishing point in a perspective rendering. Think of the point in
the distance where two perfectly straight train tracks appear to meet. Computing this
vanishing point involves points at infinity.) Projective geometry permits this.

Affine Geometry: Affine geometry is basic to all geometric processing. It’s basic elements are:

• Scalars, which we can just think of as being real numbers

• Points, which define locations in space

• Free vectors (or simply vectors), which are used to specify direction and magnitude, but
have no fixed position.

The term “free” means that vectors do not necessarily emanate from some position (like the
origin), but float freely about in space. There is a special vector called the zero vector, ~0,
that has no magnitude, such that ~v +~0 = ~0 + ~v = ~v.

Note that we did not define a zero point or “origin” for affine space. This is an intentional
omission. No point special compared to any other point. (We will eventually have to break
down and define an origin in order to have a coordinate system for our points, but this is a
purely representational necessity, not an intrinsic feature of affine space.)

You might ask, why make a distinction between points and vectors?1 Although both can be
represented in the same way as a list of coordinates, they represent very different concepts.
For example, points would be appropriate for representing a vertex of a mesh, the center of
mass of an object, the point of contact between two colliding objects. In contrast, a vector
would be appropriate for representing the velocity of a moving object, the vector normal to a
surface, the axis about which a rotating object is spinning. (As computer scientists the idea of
different abstract objects sharing a common representation should be familiar. For example,
stacks and queues are two different abstract data types, but they can both be represented as
a 1-dimensional array.)

Because points and vectors are conceptually different, it is not surprising that the operations
that can be applied to them are different. For example, it makes perfect sense to multiply a
vector and a scalar. Geometrically, this corresponds to stretching the vector by this amount.
It also makes sense to add two vectors together. This involves the usual head-to-tail rule,
which you learn in linear algebra. It is not so clear, however, what it means to multiply a
point by a scalar. (For example, the top of the Washington monument is a point. What
would it mean to multiply this point by 2?) On the other hand, it does make sense to add a
vector to a point. For example, if a vector points straight up and is three meters long, then
adding this to the top of the Washington monument would naturally give you a point that is
three meters above the top of the monument.

We will use the following notational conventions. Points will usually be denoted by lower-case
Roman letters such as p, q, and r. Vectors will usually be denoted with lower-case Roman
letters, such as u, v, and w, and often to emphasize this we will add an arrow (e.g., ~u, ~v, ~w).
Scalars will be represented as lower case Greek letters (e.g., α, β, γ). In our programs, scalars
will be translated to Roman (e.g., a, b, c). (We will sometimes violate these conventions,

1Unity does not distinguish between them. The data type Vector3 is used to represent both points and vectors.

Lecture 4 2 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

however. For example, we may use c to denote the center point of a circle or r to denote the
scalar radius of a circle.)

Affine Operations: The table below lists the valid combinations of scalars, points, and vectors.
The formal definitions are pretty much what you would expect. Vector operations are applied
in the same way that you learned in linear algebra. For example, vectors are added in the
usual “tail-to-head” manner (see Fig. 1). The difference p− q of two points results in a free
vector directed from q to p. Point-vector addition r + ~v is defined to be the translation of r
by displacement ~v. Note that some operations (e.g. scalar-point multiplication, and addition
of points) are explicitly not defined.

vector← scalar · vector, vector← vector/scalar scalar-vector multiplication
vector← vector + vector, vector← vector− vector vector-vector addition
vector← point− point point-point difference
point← point + vector, point← point− vector point-vector addition

u

v

u + v
q

p

p− q

r

v

r + v

Vector addition Point subtraction Point-vector addition

Fig. 1: Affine operations.

Affine Combinations: Although the algebra of affine geometry has been careful to disallow point
addition and scalar multiplication of points, there is a particular combination of two points
that we will consider legal. The operation is called an affine combination.

Let’s say that we have two points p and q and want to compute their midpoint r, or more
generally a point r that subdivides the line segment pq into the proportions α and 1− α, for
some α ∈ [0, 1]. (The case α = 1/2 is the case of the midpoint). This could be done by taking
the vector q − p, scaling it by α, and then adding the result to p. That is,

r = p+ α(q − p),

(see Fig. 2(a)). Another way to think of this point r is as a weighted average of the endpoints
p and q. Thinking of r in these terms, we might be tempted to rewrite the above formula in
the following (technically illegal) manner:

r = (1− α)p+ αq,

(see Fig. 2(b)). Observe that as α ranges from 0 to 1, the point r ranges along the line
segment from p to q. In fact, we may allow to become negative in which case r lies to the
left of p, and if α > 1, then r lies to the right of q (see Fig. 2(c)). The special case when
0 ≤ α ≤ 1, this is called a convex combination.

In general, we define the following two operations for points in affine space.

Lecture 4 3 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

p

r = p + 2
3(q − p)

q

p
1
3p +

2
3q

q

p

q

α < 0

0 < α < 1

α > 1(1− α)p + αq
p

q

r

0p + 1
2r +

1
2q

1
2p +

1
4r +

1
4q

(a) (b) (c) (d)

Fig. 2: Affine combinations.

Affine combination: Given a sequence of points p1, p2, . . . , pn, an affine combination is any
sum of the form

α1p1 + α2p2 + . . .+ αnpn,

where α1, α2, . . . , αn are scalars satisfying
∑

i αi = 1.

Convex combination: Is an affine combination, where in addition we have αi ≥ 0 for
1 ≤ i ≤ n.

Affine and convex combinations have a number of nice uses in graphics. For example, any
three noncollinear points determine a plane. There is a 1–1 correspondence between the
points on this plane and the affine combinations of these three points. Similarly, there is a
1–1 correspondence between the points in the triangle determined by the these points and
the convex combinations of the points (see Fig. 2(d)). In particular, the point 1

3p+ 1
3q + 1

3r
is the centroid of the triangle.

We will sometimes be sloppy, and write expressions like 1
2(p+ q), which really means 1

2p+ 1
2q.

We will allow this sort of abuse of notation provided that it is clear that there is a legal affine
combination that underlies this operation.

To see whether you understand the notation, consider the following questions. Given three
points in the 3-space, what is the union of all their affine combinations? (Ans: the plane
containing the 3 points.) What is the union of all their convex combinations? (Ans: The
triangle defined by the three points and its interior.)

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or dis-
tances. Euclidean geometry is an extension of affine geometry which includes one additional
operation, called the inner product.

The inner product is an operator that maps two vectors to a scalar. The product of ~u and
~v is denoted commonly denoted (~u,~v). There are many ways of defining the inner product,
but any legal definition should satisfy the following requirements

Positiveness: (~u, ~u) ≥ 0 and (~u, ~u) = 0 if and only if ~u = ~0.

Symmetry: (~u,~v) = (~v, ~u).

Bilinearity: (~u,~v + ~w) = (~u,~v) + (~u, ~w), and (~u, α~v) = α(~u,~v). (Notice that the symmetric
forms follow by symmetry.)

See a book on linear algebra for more information. We will focus on a the most familiar
inner product, called the dot product. To define this, we will need to get our hands dirty with

Lecture 4 4 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

coordinates. Suppose that the d-dimensional vector ~u is represented by the coordinate vector
(u0, u1, . . . , ud−1). Then define

~u · ~v =

d−1∑
i=0

uivi,

Note that inner (and hence dot) product is defined only for vectors, not for points.

Using the dot product we may define a number of concepts, which are not defined in regular
affine geometry (see Fig. 3). Note that these concepts generalize to all dimensions.

Length: of a vector ~v is defined to be
√
~v · ~v, and is denoted by ‖~v‖ (or as |~v|).

Normalization: Given any nonzero vector ~v, define the normalization to be a vector of unit
length that points in the same direction as ~v, that is, ~v/‖~v‖. We will denote this by v̂.

Distance between points: dist(p, q) = ‖p− q‖.
Angle: between two nonzero vectors ~u and ~v (ranging from 0 to π) is

ang(~u,~v) = cos−1

(
~u · ~v
‖~u‖‖~v‖

)
= cos−1(û · v̂).

This is easy to derive from the law of cosines. Note that this does not provide us with a
signed angle. We cannot tell whether ~u is clockwise our counterclockwise relative to ~v.
We will discuss signed angles when we consider the cross-product.

Orthogonality: ~u and ~v are orthogonal (or perpendicular) if ~u · ~v = 0.

Orthogonal projection: Given a vector ~u and a nonzero vector ~v, it is often convenient to
decompose ~u into the sum of two vectors ~u = ~u1 + ~u2, such that ~u1 is parallel to ~v and
~u2 is orthogonal to ~v.

~u1 ←
(~u · ~v)

(~v · ~v)
~v, ~u2 ← ~u− ~u1.

(As an exercise, verify that ~u2 is orthogonal to ~v.) Note that we can ignore the denom-
inator if we know that ~v is already normalized to unit length. The vector ~u1 is called
the orthogonal projection of ~u onto ~v. If we think of ~v as being a normal vector to a
plane, then the projection of u onto this plane is called orthogonal complement of u with
respect to v, and is given by ~u2 ← ~u− ~u1.

vθ

u

u

v

u1

u2

Angle between vectors Orthogonal projection and its complement

Fig. 3: The dot product and its uses.

Lecture 4 5 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Doing it with Unity: Unity does not distinguish between points and vectors. Both are repre-
sented using Vector3. Unity supports many of the vector operations by overloading operators.
Given vectors u, v, and w, all of type Vector3, the following operators are supported:

u = v + w; // vector addition

u = v - w; // vector subtraction

if (u == v || u != w) { ... } // vector comparison

u = v * 2.0f; // scalar multiplication

v = w / 2.0f; // scalar division

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y,
and u.z, or through indexing, such as u[0], u[1], and u[2].

The Vector3 class also has the following members and static functions.

float x = v.magnitude; // length of v

Vector3 u = v.normalize; // unit vector in v’s direction

float a = Vector3.Angle (u, v); // angle (degrees) between u and v

float b = Vector3.Dot (u, v); // dot product between u and v

Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v

Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q
be points declared to be of type Vector3. The function Vector3.Lerp is short for linear inter-
polation. It is essentially a two-point special case of a convex combination. (The combination
parameter is assumed to lie between 0 and 1.)

float b = Vector3.Distance (p, q); // distance between p and q

Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination

Lecture 4 6 Spring 2018

