
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 15
Motion Panning: Navigation Meshes

Reading: Today’s material is partially based on an article of Mikko Mononen, “Navigation Mesh
Generation via Voxelization and Watershed Partitioning,” 2009.

Motion For the next few lectures we will discuss one of the major issues in the design of AI and
algorithms in games, namely planning the motion for non-player characters (NPCs). Motion
is a remarkably complex topic, which can range from trivial (e.g., computing a straight-line
path between two points in the plane) to very complex tasks, such as:

• Planning the coordinated motion of a group of agents who wish to move to a specified
location amidst many obstacles

• Planning the motion of an articulated skeletal model subject to constraints, such as
maintaining hand contact with a door handle or avoiding collisions while passing through
through a narrow passageway

• Planning the motion of a character while navigating through a dense crowd of other
moving people (who have their own destinations), or planning motion either to evade or
to pursue the player

• Planning ad hoc motions, like that of a mountain climber jumping over boulders or
climbing up the side of a cliff

Historically, much of the initial development of techniques in this area arose from other
fields, such as robotics, autonomous vehicle navigation, and computational geometry. Game
designers have some advantages in solving these problems, since the environment in which the
NPCs move is under the control of the game designer. This means that a game designer can
simplify motion planning by creating additional free space in the environment, thus making
it easier to plan motion. (In contrast, the designer of an autonomous vehicle cannot remodel
the world to make roads wider.) Nonetheless, the techniques that we will present for doing
motion planning are broadly applicable, even though they may not need to be applied in their
full generality.

Overview: Given the diverse nature of motion planning problems it is not surprising that the
suite of techniques is quite large. We will take the approach of describing a few general ideas,
that can be applied (perhaps with modifications) across a broad range of problems. These
involve the following elements:

Single-object motion:

From objects to points: Methods such as configuration spaces can be applied to re-
duce the problem of moving a complex object (or assembly of objects) with mul-
tiple degrees of freedom (DOFs) to the motion of a single point through a multi-
dimensional space.

Discretization: Methods such as waypoints, roadmaps, and navigation meshes are used
to reduce the problem of moving a point in continuous space to computing a path
in discrete graph-like structure.

Lecture 15 1 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Shortest paths: This includes efficient algorithms for computing shortest paths, up-
dating them as conditions change, and representing them for later access.

Multiple-object motion:

Flocking: There exist methods for planning basic flocking behavior (as with birds and
herding animals) and applications to simulating crowd motion.

Purposeful crowd motion: Techniques such as velocity obstacles are used for navi-
gating a single agent from an initial start point to a desired goal point through an
environment of moving agents.

Guarding and Pursuit/Evasion: These include methods for solving motion-planning
tasks where one agent is either hunting for or attempting to elude detection by the
player or another agent.

Like many of the topics we have covered this semester, we could easily devote an entire course
to this one topic, but we will instead try to sample some of the key ideas. In this lecture, we
will focus on one of the most widely used concepts from this area, called a navigation mesh.
This is the principal support feature that the Unity Engine provides for character navigation.

Navigation Meshes: A navigation mesh (or NavMesh) is a data structure used to model free-
space, particularly for an agent that is moving along a two-dimensional surface. (Such a
surface is formally referred to as a two-manifold). A navigation mesh is a spatial subdivision
(more specifically, a cell-complex) whose faces are convex polygons, usually triangles. Each
face of the mesh behaves like a node in a graph, and two nodes are joined by an edge if the
associated faces share a common edge. Because the faces are convex, any point from inside
one face can be reached by a straight line from any other point inside the same face. As with
a waypoint system, there is an underlying graph which can be used for computing paths, but
by storing the cell complex, the paths computed are not constrained to follow the waypoints.

For example, in Fig. 1(a) we show a possible workspace. In (b) we show a possible waypoint
system, and in (c) we show a possible navigation mesh. We show a possible path using each
representation between a start point s and destination t.

(a) (b) (c)

s

t

s

t

s

t

Fig. 1: (a) An environment, (b) a possible waypoint-based roadmap, and (c) a possible navigation
map.

Because they provide a more faithful representation of the underlying free-space geometry,
navigation meshes have a number of advantages over waypoint-based methods:

Lecture 15 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

• They are capable of generating shorter and more natural paths than traditional waypoint
methods.

• Waypoint methods can generate an excessive number of points to compensate for their
shortcomings, and so navigation meshes can be considerably more space efficient.

• They can be used to plan the movement of multiple (spatially separate) agents, such as
a group of people walking abreast of each other. (Note that a waypoint system would
need to plan their motion in a single-file line.)

• It is easier to incorporate changes to the environment (such as the insertion, removal, or
modification of obstacles).

• A wide variety of pathfinding algorithms can be modified and optimized for using navi-
gation meshes.

Of course, because they are more complicated than waypoint-based methods, there are also
disadvantages to the use of navigation meshes:

• They are not as easy to generate as waypoint-based methods.

• Because navigation meshes require a more complex representation of geometry of the
scene, the associated pathfinding algorithms are more complex and may take longer to
execute.

• They are difficult to generate by hand, and automated generation systems are relatively
complex.

Automatic Generation of Navigation Meshes: If the environment is simple, the navigation
mesh can be added by the artist who generated the level. Of course, we cannot do this for
environments that imported from other sources. If the level is quite large, it is often possible
to generate a navigation mesh fairly easily. (Consider for example the sidewalks and roads of
an urban scene.) In less structured settings, it is often desirable to generate the navigation
mesh automatically. How is this done?

There are many possible approaches to building navigation meshes. We will discuss (a sim-
plified version of) a method due to Mikko Mononen. Let’s begin with a few assumptions.
First, we assume that the moving agents will be walking along a 2-dimensional surface. This
surface need not be flat, and it may contain architectural elements such as ramps, tunnels,
and stairways. We will assume that the input is expressed as a polygonal mesh of the world.
We will also assume that our moving agent is a walking/running humanoid, and hence can
be coarsely modeled as a vertical line segment or a thin cylinder with a vertical axis that
translates along this surface.

Find the walkable surfaces: Since we assume that our agent is walking, a polygon is suit-
able for walking on if (1) the polygon is roughly parallel to the ground, and (2) there is
sufficient headroom about this polygon for our agent to walk. Such a polygon is said to
be walkable. We can identify the polygons that satisfy the first condition by computing
the angle between the polygon’s (outward pointing) normal vector and the vertical unit
vector (see Fig. 2(a)). This angle can be computed through the use of the dot-product
operator, as described in earlier lectures.

Lecture 15 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

(a) (b)

h

too shortok

too steep

Fig. 2: Walkable surface (side view): (a) Identifying “flat” polygons and (b) voxel method for
determining sufficient headroom.

In order to test the the second property, let h denote the height of the agent. Mononen
suggests the follows very fast and simple approach. First, voxelize the 3-dimensional
space using a grid of sufficient resolution. (For example, the width of the grid should be
proportional to the narrowest gap the agent can slip through.) For each polygon that
passes condition (1), we determine how many voxels lie immediately above this triangle
until hitting the next obstacle (see Fig. 2(b)). (Note that this includes all the obstacle
polygons, not just the ones that are nearly level.)

Simplify the Polygon Boundaries: Consider the boundary of the walkable surface. (This
the boundary between walkable polygons and polygons that are not walkable.) This
boundary may generally consist of a very complex polygonal curve with many vertices.
We next approximate this curve by a one have much fewer vertices (see Fig. 3(a)).

(a) (b)

v0

vn

v0

vn

v0

vn

v0

vn

vk

Fig. 3: The Ramer-Douglas-Peucker Algorithm.

There is a standard algorithm for simplifying polygonal curves, called the Ramer-Douglas-
Peucker1 Algorithm. Here is how the algorithm works. First, let δ denote the maximum

1The algorithm was discovered independently by Urs Ramer in 1972 and by David Douglas and Thomas Peucker

Lecture 15 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

error that we will allow in our approximation. Suppose that the curve runs between two
points v0 and vn. If the entire curve fits within a pair of parallel lines at distance δ on
either side of the line segment v0vn, then we stop. Otherwise, we find the vertex vk at
maximum distance from this line segment. We add a new vertex at vk, and then we
recursively repeat the algorithm on the two sub-curves v0vk and vkvn (see Fig. 3(b)).

Notice that the Ramer-Douglas-Peucker algorithm is not quite what we desired, because
it generates a curve that lies on both sides of the original curve. Some modifications are
necessary in order to produce a curve that has the property of lying entirely on one side
of the original curve, but the principle is essentially the same.

Triangulating the Simplified Polygon: After simplification, we have a collection of poly-
gons, each of which may contain some number of holes (see Fig. 4(a)). The final step
is to generate a triangulation of this polygon. Ideally, we would like to have a triangu-
lation in which the triangular elements are relatively “fat.” Mononen suggests a very
simple heuristic for achieving such a triangulation. (Again, I’ll present a variant of his
approach.)

(a) (b)

v0

v1
v2

vi−1

vi+1

vi
ear

(c)

vn

chord

chord
bridging

Fig. 4: Triangulating the simplified polygon.

Before presenting the algorithm, let’s give a couple of definitions. A line segment that
connects two vertices of the polygon and that lies entirely within the interior of the
polygon is called a chord (see Fig. 4(a)). A chord that connects two holes together or
that connects a hole with the outer boundary is called a bridging chord. A chord that
connects two vertices that share common neighboring vertex cuts of a single triangle
from the polygon. This triangle is called an ear.

Here is the algorithm:

Bridge the holes: First, connect each hole of the polygon either to another hole or
two the boundary of the outer polygon using bridging chords. Repeatedly select the
bridging chord of minimum length, until all the holes are connected to the outer
boundary. (If there are h holes, this will involve exactly h bridging chords.)
By thinking of each bridging chord a consisting of two edges, one leading into the
hole and one leading out, the resulting boundary now consists of one connected

in 1973. Ramer published his result in the computer graphics community and Douglas and Peucker published theirs
in the cartography community.

Lecture 15 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

component, which we can treat as a polygon without any holes. Number the vertices
v0, . . . , vn in counterclockwise order around this polygon (see Fig. 4(b)).

Remove Ears: If the polygon consists of only three vertices, then we are done. Other-
wise, find three consecutive vertices vi−1, vi, vi+1 such that vi−1vi+1 is a chord. The
triangle 4vi−1, vi, vi+1 is an ear. Among all the possible ears, select the one whose
chord is of minimum length. Cut this ear off (ouch!) by adding the chord vi−1vi+1.
The remaining polygon has one fewer vertex. Repeat the process recursively on this
polygon, until only three vertices remain. The union of all the removed ears is the
final triangulation (see Fig. 4(c)).

By the way, this is but one way to triangulate a polygon with holes. There are many
algorithms that are significantly more efficient than this one (from the perspective of
worst-case running time). The best such algorithms run in time O(n log n). If the
polygon has no holes, it is possible to triangulate it in O(n) time, but the algorithm is
quite complicated, and the O(n log n) time algorithm is more widely used.

Computing Paths in Polygonal Domains: The final triangulation is the desired navigation
mesh. The last detail that remains is how to compute shortest paths in the navigation mesh.
In our next lecture we will present algorithms for computing shortest paths in geometric
graphs. Assuming that we have such an algorithm, let us next consider how to generalize a
graph-based shortest path to a mesh-based shortest path.

Computing a the exact shortest path on a mesh or within a polygonal domain can be solved
efficiently in theory, but the algorithm is a bit complicated. We will propose a simpler
approach, which produces a good approximate solution.

Discretize: First, distribute a small number of vertices along the each edge of the mesh (see
Fig. 5(a) and (b)). Next, for each face of the mesh, form a complete graph by connecting
these vertices together (see Fig. 5(a) and (c))).

(b) (c)(a)

Fig. 5: Discretizing a polygonal domain for computing shortest paths.

Shorten/Smooth: Compute the shortest path in the resulting graph using any graph-based
method (see Fig. 6(a)). Identify a simple polygon (without holes) by combining all the
faces of the mesh that this path passes through (see the shaded polygon in Fig. 6(b)).

Lecture 15 6 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Finally, apply any further optimizations (such as shortening or smoothing) to the path
as desired, subject to the constraint that the path does not leave this shaded polygon
(see Fig. 6(c)). Because this polygon has no holes, it is much easier to perform the
desired optimizations.

(a) (b) (c)

t

s

t

s

t

s

Fig. 6: (a) The shortest path between s and t, (b) the polygon containing the path (shaded in red),
and (c) the final smoothed path.

Lecture 15 7 Spring 2018


