CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 23
Detecting and Preventing Cheating in Multiplayer Games

Reading: This lecture is based on the following articles: M. Pritchard, “How to Hurt the Hackers:
The Scoop on Internet Cheating and How You Can Combat It,” Gamasutra 2000; J. Yan and B.
Randell, “A Systematic Classification of Cheating in Online Games,” NetGames 2005, 1-9; S. D.
Webb and S. Soh, “Cheating in Networked Computer Games: A Review,” DIMEA 2007, 105-112

Cheating in Multiplayer Games: “Cheating” is defined to be acting dishonestly or unfairly
in order to gain an advantage. In online games, players often strive to obtain an unfair
advantage over others, for various reasons. One of the first analyses of cheating in online
games appeared around 2000 in a Gamasutra article by Matthew Pritchard. He makes the
following observations:

e If you build it, they will come to hack and cheat
e Hacking attempts increase as a game becomes more successful
e Cheaters actively try to control knowledge of their cheats

e Your game, along with everything on the cheater’s computer, is not secure—not memory,
not files, not devices and networks

e Obscurity # security

e Any communication over an open line is subject to interception, analysis and modifica-
tion

e There is no such thing as a harmless cheat
e Trust in the server is everything in client-server games

e Honest players would like the game to tip them off to cheaters

Pritchard identifies a number of common cheating attacks and discusses how to counter them.
His list includes the following;:

Information Exposure: Clients obtain/modify information that should be hidden.
Reflex Augmentation: Improve physical performance, such as the firing rate or aiming

Authoritative Clients: Although the server should have full authority, some online games
grant clients authority over game execution for the sake of efficiency. Cheaters then
modify the client software.

Compromised servers: A hacked server that biases game-play towards the group that
knows of the hacks.

Bugs and Design Loopholes: Bugs and design flaws in the game are exploited.

Infrastructure Weaknesses: Differences or problems with the operating system or network
environment are exploited.

We will discuss some of these in greater detail below.

Lecture 23 1 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Reflex Augmentation: Reflex augmentation systems involve the use of software that, through
various methods, circumvents the user-based aiming/firing systems to a software-based sys-
tem.

One example is an aimbot. An aimbot is implemented by modifying the game client program
or running an external program in order to generate simulated user input. Network packets
are intercepted and interpreted to determine the location of enemies and obstacles. Then
computer Al is used to completely control the player’s avatar and automate repetitive tasks,
progressing the player’s avatar through the game. Another example is a reflex enhancer,
which augment a user’s input in reflex games to achieve better results. For example, in a
shooter game, the software can automatically aim at opponents.

Reflex augmentation typically involves modifying the underlying game executable or mod-
ifying one of the system’s library functions that the game invokes. Techniques borrowed
from the area of virus detection can be employed to be sure that the user has not tampered
with the game’s binary executable. Some approaches are static, using fingerprinting to scan
the player’s host memory in search of bit patterns of known cheating applications. A more
dynamic approach is to periodically download the original game executable and compare
its behavior to the user’s game’s behavior. If the executable has not been tampered with,
then the two should behave identically. If not, the user must have tampered with the code
somehow.

Information Exposure: This method of cheating involves the cheater gaining access to informa-
tion that they are not entitled to, such as their opponent’s health, weapons, resources, troops.
This cheat is possible as developers often incorrectly assume that the client software can be
trusted not to reveal secrets. Secret information is revealed by either modifying the client or
running another program that extracts it from memory.

Key Variables As a concrete example, let’s consider cheating/hacking software that enables
a hacker to access and modify the memory where the program stores its data. Your
game has a integer variable, say num_lives, that controls the number of remaining lives
the player has. A hacker wants to control this value but does not know where in memory
this variable resides.

The hacker can employ the following trick to find it. Suppose that the player starts
with 5 lives, so num_lives = 5. Search memory for all occurrences of memory locations
containing the value 5. There are many of them. Next, kill yourself, thus reducing the
number of lives to 4 and search among the previous hits to find those that now store the
value 4. (This may sound tedious, but it is easy to design a program to help with this.)
Repeat this until you can identify a unique (or generally small number of) match the
above searches. Now, the hacker just modifies these memory locations to any desired
value, say 9999, and now the hacker has infinite life.

How do we fix/detect this? One fix is to wrap important variables like num_lives within
a class, say, Encryptedint, where the actual value is stored in encrypted form. The
getters/setters of the class decrypt/encrypt the value during each access. It is now much
harder for the hacker to locate the memory location where this value is stored, and even
if it could be found, it would be impossible (without hacking the encryption algorithm)
to know what value to set it to.

Lecture 23 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Graphics Hacks: Suppose that you have a shooter game, where enemies may hide behind
walls, bushes, or may rely on atmospheric effects like smoke or fog. The cheater then
modifies the parameters that control these obscuring elements, say by making walls
transparent, removing the foliage on bushes, and changing the fog parameters in the
graphics system so it effectively disappears. The cheating application alone now has an
un-obscured view of the battlefield.

Physics Hack: Unity uses physics components such as the RigidBody to keep a player from
moving through obstructions like walls. One form of an attack involves inserting code
that disables a player’s or walls’ RigidBody components, thus enabling this player to
move through walls. (You need to watch out for gravity, less you fall through the floor
as well.) While such an attack may be hard to prevent, it may be detectable by inserting
code the periodically verifies that the program’s key objects satisfy their key properties.

User-Preferences: In order to save data from one program execution to the next, such as
user-preferences and earned assets, some operating systems (notably Microsoft Windows)
save persistent data in a single database of saved data. In the case of Windows, this
is called the registry. A hacker can look for an obviously named registry entry (e.g.,
“NUM_LIVES”) and then employ a registry editor program (e.g., Windows regedit) to
modify these values. Using obscure names and encrypting the values are prevent this.

Speed Hack: A speed hack modifies the game’s perception of time to either slow-down or
speed-up the game. This can be done to fast-forward through lengthy boring sequences
or slow down targets so they are easier to attack. A game program’s concept of time is
based on calls to the clock functions offered by the operating system. Through the use
of general-purpose hacking tricks, it is possible to hijack these calls, thus modifying your
game’s concept of time (e.g., by making the value of Time.deltaTime larger or smaller
by some factor).

These are sometimes called infrastructure-level cheats, since they involve accessing or modi-
fying elements of the infrastructure in which the program runs. In a client-server setting, this
can be dealt with is using a technique called on-demand-loading (ODL). Using this technique
a trusted third party (the server) stores all secret information and only transmits it to the
client when they are entitled to it. Therefore, the client does not have any secret information
that may be exposed.

As mentioned above, another approach for avoiding information exposure is to encrypt all
secret information. This makes it difficult to determine where the information is and how to
interpret its meaning.

Protocol-level cheats: Because most multiplayer games involve communication through a net-
work, many cheats are based on interfering with the manner in which network packets are
processed. Packets may be inserted, destroyed, duplicated, or modified by an attacker. Many
of these cheats are dependent on the architecture used by the game (client-server or peer-to-
peer). Below we describe some protocol-level cheats.

Suppressed update: As we mentioned last time, the Internet is subject latency and packet loss.
For this reason, most networked games use some form of dead-reckoning. In the event of a
lost /delayed updates, the server will extrapolate (dead-reckon) the players movement from

Lecture 23 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

their most recent position and velocity, creating a smooth movement for all other players.
Dead-reckoning usually allows clients to drop some fixed number of consecutive packets be-
fore they are disconnected. In the suppressed update cheat, a cheater purposely suppresses
the transmission of some fixed number consecutive updates (but not so many to be discon-
nected), while still accepting opponent updates. The attacker (who is able to see the other
player’s movements during this time) calculates the optimal move using the updates from
their opponents and transmits it to the server. Thus, the cheater knows their opponents
actions before committing to their own, allowing them to choose the optimal action.

Architectures with a trusted entity (e.g., the server), can prevent this cheat by making the
server’s dead-reckoned state authoritative (as opposed to allowing the client to do it). Players
are forced to follow the dead-reckoned path in the event of lost/delayed updates. This gives a
smooth and cheat-free game for all other players; however, it may disadvantage players with
slow Internet connections. In a less authoritative environment (e.g., peer-to-peer) it may be
possible for other players to monitor the delay in their opponents and compare it with the
timestamps of updates. Late updates indicate that a player is either suffering delay, or is
cheating.

Fixed delay: Fixed delay cheating involves introducing a fixed amount of delay to all outgoing
packets. This results in the local player receiving updates quickly, while delaying information
to opponents. For fast paced games this additional delay can have a dramatic impact on the
outcome. This cheat is usually used in peer-to-peer games, when one peer is elevated to act
as the server. Thus, they can add delay to all other peers.

One way to prevent this cheat in peer-to-peer games can use distributed event ordering and
consistency protocols to avoid elevating one peer above the rest. Note, the fixed delay cheat
only delays updates, in contrast to dropping them in the suppressed update cheat.

Another solution is to force all players to use a protocol that divides game time into rounds
and requires that every player in the game submit their move for that round before the next
round is allowed to begin. (One such protocol is called lockstep.) To prevent cheating, all
players commit to a move, and once all players have committed, each player reveals their
move. A player commits to a move by transmitting either the hash of a move or an encrypted
copy of a move, and it is revealed by sending either the move or encryption key respectively.
Lockstep is provably secure against these and other protocol level cheats. Unfortunately, this
approach is unacceptably slow for many fast-paced games, since it forces all players to wait
on the slowest one.

Another example of a protocol to prevent packet suppression/delaying is called sliding pipeline
(SP). SP works by constantly monitoring the delay between players to determine the maxi-
mum allowable delay for an update without allowing times-stamp cheating (see below). SP
does not lock all players into a fixed time step, and so can be applied to faster-paced games.
Unfortunately, SP cannot always differentiate between players suffering delay and cheaters
(false positives).

More Protocol-Level Cheats: The above (suppressed update and fixed delay) are just two ex-
amples of protocol-level cheats. There are many others, which we will just summarize briefly
here.

Lecture 23 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Inconsistency: A cheater induces inconsistency amongst players by sending different game
updates to different opponents. An honest player attacked by this cheat may have his
game state corrupted, and hence be removed from the game, by a cheater sending a
different update to him than was sent to all other players. To prevent this cheat updates
sent between players must be verified by either a trusted authority, or a group of peers.

Time-stamp: This cheat is enabled in games where an untrusted client is allowed to time-
stamp their updates for event ordering. This allows cheaters to time-stamp their updates
in the past, after receiving updates from their opponents. Hence, they can perform
actions with additional information honest players do not have. To prevent this, rather
than using timestamps, processing should be based on the arrival order of updates to
the server.

Collusion: Collusion involves two or more cheaters working together (rather than in com-
petition) to gain an unfair advantage. One common example is of players participating
in an all-against-all style match, where two cheaters will team up (collude) against the
other players. Colluding players may communicate over an external channel (e.g., over
the phone or instant messaging). This is very hard to detect and prevent.

Spoofing: Spoofing is where a cheater sends a message masquerading as a different player.

For example, a cheater may send an update causing an honest player to drop all of their
items. To prevent this cheat, updates should be either digitally signed or encrypted.
If a cheater receives digitally signed/encrypted copies of an opponent’s updates he may
still be able to disadvantage an opponent by resending them at a later time. Since the
updates are correctly signed or encrypted, they will be assumed valid by the receiver. To
prevent updates should include a unique number, such as a round number or sequence
number, which the receiver can then check to ensure the message is genuine.

Detecting Cheating: Here are a few approaches to detect/prevent cheating.

e Signature detection - Detecting of certain patterns of bytes in memory, checked against
a database

e Heuristic analysis - Statistical analysis of behavior

e User reports - Information provided by other users

Signature detection: This is the primary method in which cheating software is detected.
Let’s consider how this works for anti-virus software.

e A cheating attack (hack) is developed.

e The hacked software is analyzed, and a “signature” that identifies the binary of the
hacked code is saved in a database.

e Before installing software, its binary is checked against the known signatures to
detect hacked versions.

The difficulty in game programming is that, even though a cheater is caught, the hacked
code resides on the cheater’s machine, and hence may be difficult to obtain by the
“authorities” who manage the game. This might be done, for example, by having a
program that transmits a memory scan of the infected software, but this solution is

Lecture 23 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

quite expensive and may not scale up to large numbers of users. But, this is assuming
that the user actually designed his own hacked version of the game software. Most users
are not this sophisticated, and instead download the sofware from third-party providers
of hacked game software. The authorities can find these same sites, download the hacked
software, and create signatures that will identify them.

Heuristic analysis: Lets say the you are a typical player. You have established a baseline of

typical performance. Sometimes you have an excellent performance and do much better
than your baseline. As your skill improves, your baseline trends upwards as well. Your
performance can also become significantly worse (as when you loan your ID out to your
younger cousin who is visiting for a few weeks). So, if your performance suddenly surges
up and maintains a high level over a period of time, this would seem suspicious.

Heuristic analysis is an application of machine learning, in which an analysis of player
statistics (scores, kill rates, speed and accuracy of mouse movement) to detect behavior
that sufficiently far from the norm, that it can be infered to be the result of cheating. This
is particularly useful against reflex augmentation software, provided that the software
does “too good” a job of enhacing a player’s performance. Of course, a careful cheater
who understands this will keep his/her performance within believable limits, slowly
increasing their baseline performance to avoid detection.

User reports: If a cheater’s behavior is spoiling the experience for many users, some of

Lecture 23

these users will complain, and this can lead to detecting the cheater.

6 Spring 2018



