ASSIGNMENT 4

Due by 12:30 pm on Thursday, April 4. Submit your solutions in PDF via Gradescope. Please include a list of students in the class with whom you discussed the problems, or else state that you did not discuss the assignment with your classmates.

- 1. The Bernstein-Vazirani problem.
 - (a) [2 points] Suppose $f: \{0,1\}^n \to \{0,1\}$ is a function of the form

$$f(x) = x_1 s_1 + x_2 s_2 + \dots + x_n s_n \mod 2$$

for some unknown $s \in \{0,1\}^n$. Given a black box for f, how many classical queries are required to learn s with certainty?

(b) [3 points] Prove that for any *n*-bit string $u \in \{0, 1\}^n$,

$$\sum_{v \in \{0,1\}^n} (-1)^{u \cdot v} = \begin{cases} 2^n & \text{if } u = 00 \dots 0\\ 0 & \text{otherwise.} \end{cases}$$

(c) [4 points] Let U_f denote a quantum black box for f, acting as $U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle$ for any $x \in \{0,1\}^n$ and $y \in \{0,1\}$. Show that the output of the following circuit is the state $|s\rangle(|0\rangle - |1\rangle)/\sqrt{2}$.

(d) [1 point] What can you conclude about the quantum query complexity of learning s?

- 2. A fast approximate QFT.
 - (a) [2 points] In class, we saw a circuit implementing the *n*-qubit QFT using Hadamard and controlled- R_k gates, where $R_k|x\rangle = e^{2\pi i x/2^k}|x\rangle$ for $x \in \{0,1\}$. How many gates in total does that circuit use? Express your answer both exactly and using Θ notation. (Recall that we say $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.)
 - (b) [3 points] Let CR_k denote the controlled- R_k gate, with $CR_k|x, y\rangle = e^{2\pi i x y/2^k}|x, y\rangle$ for $x, y \in \{0, 1\}$. Show that $E(CR_k, I) \leq 2\pi/2^k$, where I denotes the 4×4 identity matrix, and where $E(U, V) = \max_{|\psi\rangle} ||U|\psi\rangle V|\psi\rangle||$. You may use the fact that $\sin x \leq x$ for any $x \geq 0$.
 - (c) [5 points] Let F denote the exact QFT on n qubits. Suppose that for some constant c, we delete all the controlled- R_k gates with $k > \log_2(n) + c$ from the QFT circuit, giving a circuit for another unitary operation, \tilde{F} . Show that $E(F, \tilde{F}) \leq \epsilon$ for some ϵ that is independent of n, where ϵ can be made arbitrarily small by choosing c arbitrarily large. (Hint: Use equation 4.3.3 of KLM.)
 - (d) [1 point] For a fixed c, how many gates are used by the circuit implementing \tilde{F} ? It is sufficient to give your answer using Θ notation.

- 3. Implementing the square root of a unitary.
 - (a) [2 points] Let U be a unitary operation with eigenvalues ± 1 . Let P_0 be the projection onto the +1 eigenspace of U and let P_1 be the projection onto the -1 eigenspace of U. Let $V = P_0 + iP_1$. Show that $V^2 = U$.
 - (b) [2 points] Give a circuit of 1- and 2-qubit gates and controlled-U gates with the following behavior (where the first register is a single qubit):

$$|0\rangle|\psi\rangle \mapsto \begin{cases} |0\rangle|\psi\rangle & \text{if } U|\psi\rangle = |\psi\rangle \\ |1\rangle|\psi\rangle & \text{if } U|\psi\rangle = -|\psi\rangle \end{cases}$$

- (c) [4 points] Give a circuit of 1- and 2-qubit gates and controlled-U gates that implements V, and show that it has the desired behavior. Your circuit may use ancilla qubits that begin and end in the $|0\rangle$ state.
- 4. Fourier transforms and composite systems. Recall that the quantum Fourier transform on n qubits is defined as the transformation

$$|x\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{y=0}^{2^n-1}e^{2\pi i x y/2^n}|y\rangle$$

where we identify n-bit strings and the integers they represent in binary. More generally, for any nonnegative integer N, we can define the quantum Fourier transform modulo N as the transformation

$$|x\rangle \stackrel{F_N}{\mapsto} \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i x y/N} |y\rangle$$

where the state space is \mathbb{C}^N , with orthonormal basis $\{|0\rangle, |1\rangle, \dots, |N-1\rangle\}$.

- (a) [3 points] Show that F_N is a unitary transformation.
- (b) [1 point] Write F_5 in matrix form.
- (c) [3 points] Show that $F_2 \otimes F_3 \cong F_6$, where \cong denotes equivalence up to a permutation of the rows and columns (not necessarily the same permutation for the rows as for the columns).
- (d) [3 points] Show that $F_N \otimes F_M \cong F_{NM}$ does not hold in general.
- (e) [5 bonus points] Show that if N and M are relatively prime, then $F_N \otimes F_M \cong F_{NM}$.
- 5. Factoring 21.
 - (a) [2 points] Suppose that, when running Shor's algorithm to factor the number 21, you choose the value a = 2. What is the order r of a mod 21?
 - (b) [3 points] Give an expression for the probabilities of the possible measurement outcomes when performing phase estimation with n bits of precision in Shor's algorithm.
 - (c) [2 points] In the execution of Shor's algorithm considered in part (a), suppose you perform phase estimation with n = 7 bits of precision. Plot the probabilities of the possible measurement outcomes obtained by the algorithm. You are encouraged to use software to produce your plot.
 - (d) [2 points] Compute $gcd(21, a^{r/2} 1)$ and $gcd(21, a^{r/2} + 1)$. How do they relate to the prime factors of 21?
 - (e) [3 points] How would your above answers change if instead of taking a = 2, you had taken a = 5?