
ASSIGNMENT 5 CMSC/PHYS 457 (Spring 2019)

Due by 12:30 pm on Thursday, April 18. Submit your solutions in PDF via Gradescope. Please
include a list of students in the class with whom you discussed the problems, or else state that you
did not discuss the assignment with your classmates.

1. Finding a hidden slope. Let p be a prime number. Suppose you are given a black-box function
f : {0, 1, . . . , p − 1} × {0, 1, . . . , p − 1} → {0, 1, . . . , p − 1} such that f(x, y) = f(x′, y′) if and
only if y′ − y = m(x′ − x) mod p for some unknown integer m. In other words, the function is
constant on lines of slope m, and distinct on different parallel lines of that slope. Your goal is to
determine m mod p using as few queries as possible to f , which is given by a unitary operation
Uf satisfying Uf |x〉|y〉|z〉 = |x〉|y〉|z + f(x, y) mod p〉 for all x, y, z ∈ {0, 1, . . . , p − 1}. (Note
that each of the three registers stores an integer modulo p, which we do not need to explicitly
represent using qubits.)

(a) [2 points] Let Fp denote the Fourier transform modulo p, the unitary operator

Fp =
1
√
p

p−1∑
x,y=0

e2πixy/p|x〉〈y|.

Suppose we begin with three registers in the state |0〉|0〉|0〉. If we apply Fp ⊗ Fp ⊗ I, what
is the resulting state?

(b) [3 points] Now suppose we apply Uf and measure the state of the third register in the
computational basis (i.e., the basis {|0〉, |1〉, . . . , |p−1〉}). What are the probabilities of the
different possible measurement outcomes, and what are the resulting post-measurement
states of the first two registers?

(c) [5 points] Show that by applying F−1p ⊗ F−1p to the post-measurement state of the first
two registers and then measuring in the computational basis, one can learn m mod p with
probability 1− 1/p.

2. Searching for a quantum state.

Suppose you are given a black box Uφ that identifies an unknown quantum state |φ〉 (which may
not be a computational basis state). Specifically, Uφ|φ〉 = −|φ〉, and Uφ|ξ〉 = |ξ〉 for any state
|ξ〉 satisfying 〈φ|ξ〉 = 0.

Consider an algorithm for preparing |φ〉 that starts from some fixed state |ψ〉 and repeatedly
applies the unitary transformation V Uφ, where V = 2|ψ〉〈ψ| − I is a reflection about |ψ〉.

Let |φ⊥〉 = e−iλ|ψ〉−sin(θ)|φ〉
cos(θ) denote a state orthogonal to |φ〉 in span{|φ〉, |ψ〉}, where 〈φ|ψ〉 =

eiλ sin(θ) for some λ, θ ∈ R.

(a) [1 point] Write the initial state |ψ〉 in the basis {|φ〉, |φ⊥〉}.
(b) [3 points] Write Uφ and V as matrices in the basis {|φ〉, |φ⊥〉}.
(c) [3 points] Let k be a positive integer. Compute (V Uφ)k.

(d) [2 points] Compute 〈φ|(V Uφ)k|ψ〉.
(e) [2 points] Suppose that |〈φ|ψ〉| is small. Approximately what value of k should you choose

in order for the algorithm to prepare a state close to |φ〉, up to a global phase? Express
your answer in terms of |〈φ|ψ〉|.

1



3. The collision problem.

Recall that the quantum search algorithm can find a marked item in a search space of size N
using O(

√
N/M) queries, where M is the total number of marked items.

In the collision problem, you are given a black-box function f : {1, 2, . . . , N} → S (for some set
S) with the promise that f is two-to-one. In other words, for any x ∈ {1, 2, . . . , N}, there is a
unique x′ ∈ {1, 2, . . . , N} such that x 6= x′ and f(x) = f(x′). The goal of the problem is to find
such a pair (x, x′) (called a collision).

(a) [3 points] For any K ∈ {1, 2, . . . , N}, consider a quantum algorithm for the collision problem
that works as follows:

• Query f(1), f(2), . . . , f(K).

• If a collision is found, output it.

• Otherwise, search for a value x ∈ {K + 1,K + 2, . . . , N} such that f(x) = f(x′) for
some x′ ∈ {1, 2, . . . ,K}.

How many quantum queries does this algorithm need to make in order to find a collision?
Your answer should depend on N and K, and can be expressed using big-O notation.

(b) [3 points] How should you choose K in part (a) to minimize the number of queries used?

(c) [2 points] It turns out that the algorithm you found in part (b) is essentially optimal
(although proving this is nontrivial). Discuss the relationship between the collision problem
and Simon’s problem in light of this fact.

4. The five-qubit code. Consider a quantum error correcting code that encodes one logical qubit
into five physical qubits, with the logical basis states

|0L〉 = 1
4(|00000〉
+|10010〉+ |01001〉+ |10100〉+ |01010〉+ |00101〉
−|11000〉 − |01100〉 − |00110〉 − |00011〉 − |10001〉
−|01111〉 − |10111〉 − |11011〉 − |11101〉 − |11110〉)

|1L〉 = 1
4(|11111〉
+|01101〉+ |10110〉+ |01011〉+ |10101〉+ |11010〉
−|00111〉 − |10011〉 − |11001〉 − |11100〉 − |01110〉
−|10000〉 − |01000〉 − |00100〉 − |00010〉 − |00001〉).

(a) [4 points] Show that |0L〉 and |1L〉 are simultaneous eigenstates (with eigenvalue +1) of the
operators given in equation 10.5.18 of KLM. (Hint: You can show this without explicitly
checking every case.)

(b) [5 points] Show that this code can correct an X or Z error acting on any of the five qubits.
You should explain how the different possible errors would be reflected by a measurement
of the error syndrome.

(c) [1 point] Explain why this means that the code can correct any single-qubit error.

(d) [2 points] Find logical Pauli operators XL and ZL such that XL|0L〉 = |1L〉, XL|1L〉 = |0L〉,
ZL|0L〉 = |0L〉, and ZL|1L〉 = −|1L〉.

(e) [3 bonus points] Give a quantum circuit that computes the syndrome of the five-qubit code.

2


