Proving Safety of
a Distributed
Program

OOOOOOOOOOO

Way Ahead:

Program Orientation

Proof Structure + Methods
Lessons Learned + Takeaways
Code Inspection + Questions

Other Resources

Program Orientation
“Dining” Distributed Lock

. 2 FIFO CHANNELS

To eat, a node must hold the fork.
Hungry nodes (waiting to eat, without fork) send ‘R’ request and wait for fork.
Thinking nodes must release fork on receipt of ‘R’.

State:
Thinking,
Hungry,
or Eating

Desired Safety Property: Two nodes should never ‘eat’ at the same time

“Dining” Distributed Lock

Node: State, Fork, Req, Done

acquire () #eat

if not Fork: State <- Hungry; send Req; Req <- False
wait for Fork: State <- Eat

release ()
state <- Thinking
if Req: send Fork; Fork <- False

Assume atomicity of these rules.
All state changes in acq, rel, and
recv_msg will happen without any

other state changes interfering.
recv._msg()

while not Done: msg <- FIFO channel

msg = Fork: Fork <- True

“ =Req: Req <- True ; if Thinking: send Fork; Fork <- False
= End: Done <- True

o

Proof Structure

Represent a World with two Nodes in Coq

Capture all relevant state

Define the possible state transitions via atomic rules
Identify a set of Invariant Assertions:

o hold for every reachable state

o imply Satety:
o Invariant(~ (Node A eating /\ Node B eating))

Proof Structure

Represent a World with two Nodes in Coq

Capture all relevant state
Define the possible state transitions via atomic rules

Identify a set of Invariant Assertions:
o Number of forks (World) =1
o Node X Eating -> X has Fork
o imply Satety:
o Invariant(~ (Node A eating /\ Node B eating))

Coqg Methods

Definition initState (n: node) : nodeState :=

match n with
|a=>{->10}&{S->0;F->1;R->0;D-->0;,W->0}
| b=>{->10}&{S->0;F->0;R->1;D->0;W-->0}

end.

Inductive msg : Type := Inductive input : Type :=
| req : msg | acq : input
| fork : msg | rel : input
| endm : msg | endi : input
| nullm : msg. | nulli : input.

Inductive world : Type :=
| spawn (I : localState) (inFlightMsgs : list packet) (trace : list externalEvent).

Coqg Methods

Definition processinput (n : node)(i : input)(s : nodeState) : response :=
match (s W),(s D) with
| 1, _=>r(s, ([]1)) (* Accept / process no input if the node is waiting *)
| ,1=>r(s,([])) (* Accept / process no input if the node is ended *)
| , =
match i with
| acg => match (s F) with
| 1=>r((s&{S-->2}),([]))
| =>r((s&{S-->1;R-->0;W-->11}),(p((neighborn),req)::[]1))
end
| rel => match (s F),(s R) with
| 0, _=>r(s,([])) (* Do nothing, invalid user call (rel without fork) *)
| 1, 1=>r((s &{F-->0;S-->01}), (p((neighbor n),fork) ::[1))
|1, _=>r((s&{S-->0}),([]))
| ., _=>r(s,([])) (* Do nothing, invalid node state *)
end
| endi=>r((s & {D-->11}), (p((neighbor n),endm) ::[]))

| nulli=>r(s, ([]1)) (* nothing placeholder for our null input *)
end

end.

Coqg Methods

Definition processMsg (n : node)(m : msg)(s : nodeState) : response :=
match m with
| req =>match (s S),(s F) with
| 0,1=>r((s&{F-->0;R-->11}),(p((neighbor n),fork) ::[]1)) (* comment *)
| ,_ =>r((s&{R-->1}),([1)) (* optimization + proofing *)
end
| fork => (processinput nacq (s & {F-->1;W-->01}))
| endm => match s D with
| 0=>r((s&{D-->1}),([]))
| _=>r(s, ([1))
end
| nullm=>r(s, ([]1)) (* nothing placeholder for our null message *)

end.

Coqg Methods

Inductive reliable_step : world -> world -> Prop :=
| step_input: forall win st' ms,
processinput ni ((localSt w) (key n)) = r(st', ms) ->
reliable_step w
(W (((localSt w) & {(key n) -->st'}), (ms ++ (inFlightMsgs w)),
((trace w) ++ [e(n, i)])))

| step_msg : forallw m n st' ms,
nextMessage n (inFlightMsgs w) = (p(n,m)) ->
processMsg n m ((localSt w) (key n)) = r(st', ms) ->
reliable_step w
(W(((localSt w) & {(key n) -->st'}), (ms ++ (pop (inFlightMsgs w) (p(n,m)))),
(tracew))).

Definition reliable step star :=clos_refl _trans_nl1l _reliable step.

Definition reachable (w : world) : Prop :=reliable_step_star initWorld w.

Coqg Methods

Theorem bool_vars_bool : forall w, reachable w ->
check_binvars_bin w bool_vars =true. (* Comment on setup of world state *)

Theorem one_fork : forall w, reachable w -> forks w = 1.
Theorem eating_imp_fork : forall w N, reachable w ->
N=A\/N=B->
localSt wN S =2->localStwN F=1.

Theorem one_eater : forall w, reachable w ->
~(localStw A S =2 /\localStwBS = 2).

Code Inspection + Questions

Other Resources: Verdi

“framework from the University of Verdi
Formally Verifying Distributed Systems

Washington to implement and formally
verify distributed systems” e 500 B 5, e e

may crash and the network may drop, reorder, or duplicate

holds(transfe packets. Verdi is a framework from the University of

Washington to implement and formally verify distributed

systems. Verdi supports several d t fault models
ranging from i i alistic. Verdi's verifie

f ulate common fault tol
verify an application in an
fault model, and then apply a VST to obtain an

htt . Ve rdi UW |Se Or ’ ation that is guaranteed to have analogous
p 0 . p . g properties in a more adversarial environment.
Verdi is developed using the Coq proof assistant, and
systems are ext d to OCaml for execution. Verdi

systems, including a fault-tolerant key-value store, achieve
comparable performance to unverified counterparts

Open source, nice blog intros

Verified System Transformers — prove safety
under certain conditions, will an
into another which

http://verdi.uwplse.org/

	Proving Safety of a Distributed Program
	Way Ahead:
	Program Orientation�“Dining” Distributed Lock
	Program Orientation�“Dining” Distributed Lock
	�Proof Structure
	Proof Structure
	Coq Methods
	Coq Methods
	Coq Methods
	Coq Methods
	Coq Methods
	Code Inspection + Questions
	Other Resources: Verdi

