
Proving Safety of
a Distributed
Program

GEOFF MOORES

Way Ahead:
Program Orientation

Proof Structure + Methods

Lessons Learned + Takeaways

Code Inspection + Questions

Other Resources

Program Orientation
“Dining” Distributed Lock

A B2 FIFO CHANNELS

To eat, a node must hold the fork.
Hungry nodes (waiting to eat, without fork) send ‘R’ request and wait for fork.
Thinking nodes must release fork on receipt of ‘R’.

Desired Safety Property: Two nodes should never ‘eat’ at the same time

State:
Thinking,
Hungry,
or Eating

Program Orientation
“Dining” Distributed Lock

recv_msg()
while not Done: msg <- FIFO channel
msg = Fork: Fork <- True
“ = Req: Req <- True ; if Thinking: send Fork; Fork <- False
“ = End: Done <- True

Node: State, Fork, Req, Done

acquire () #eat
if not Fork: State <- Hungry; send Req; Req <- False
wait for Fork: State <- Eat

release ()
state <- Thinking
if Req: send Fork; Fork <- False

Assume atomicity of these rules.
All state changes in acq, rel, and
recv_msg will happen without any
other state changes interfering.

Proof Structure
Represent a World with two Nodes in Coq

Capture all relevant state

Define the possible state transitions via atomic rules

Identify a set of Invariant Assertions:
o hold for every reachable state
o imply Safety:

o Invariant(~ (Node A eating /\ Node B eating))

Proof Structure
Represent a World with two Nodes in Coq

Capture all relevant state

Define the possible state transitions via atomic rules

Identify a set of Invariant Assertions:
o Number of forks (World) = 1
o Node X Eating -> X has Fork
o imply Safety:

o Invariant(~ (Node A eating /\ Node B eating))

Coq Methods

Definition initState (n: node) : nodeState :=
match n with

| a => { --> 10 } & { S --> 0 ; F --> 1 ; R --> 0 ; D --> 0 ; W --> 0 }
| b => { --> 10 } & { S --> 0 ; F --> 0 ; R --> 1 ; D --> 0 ; W --> 0 }

end.

Inductive msg : Type :=
| req : msg
| fork : msg
| endm : msg
| nullm : msg.

Inductive world : Type :=
| spawn (l : localState) (inFlightMsgs : list packet) (trace : list externalEvent).

Inductive input : Type :=
| acq : input
| rel : input
| endi : input
| nulli : input.

Coq Methods
Definition processInput (n : node)(i : input)(s : nodeState) : response :=
match (s W),(s D) with
| 1,_ => r(s, ([])) (* Accept / process no input if the node is waiting *)
| _,1 => r(s, ([])) (* Accept / process no input if the node is ended *)
| _,_ =>
match i with

| acq => match (s F) with
| 1 => r((s & { S --> 2 }), ([]))
| _ => r((s & { S --> 1 ; R --> 0 ; W --> 1 }), (p((neighbor n),req) :: []))

end
| rel => match (s F),(s R) with

| 0, _ => r(s, ([])) (* Do nothing, invalid user call (rel without fork) *)
| 1, 1 => r((s & { F --> 0 ; S --> 0 }), (p((neighbor n),fork) :: []))
| 1, _ => r((s & { S --> 0 }), ([]))
| _ , _ => r(s, ([])) (* Do nothing, invalid node state *)
end

| endi => r((s & { D --> 1 }), (p((neighbor n),endm) :: []))
| nulli => r(s, ([])) (* nothing placeholder for our null input *)

end
end.

Coq Methods

Definition processMsg (n : node)(m : msg)(s : nodeState) : response :=
match m with
| req => match (s S),(s F) with

| 0,1 => r((s & { F --> 0 ; R --> 1 }), (p((neighbor n),fork) :: [])) (* comment *)
| _,_ => r((s & { R --> 1 }), ([])) (* optimization + proofing *)

end
| fork => (processInput n acq (s & { F --> 1 ; W --> 0 }))
| endm => match s D with

| 0 => r((s & { D --> 1 }), ([]))
| _ => r(s, ([]))

end
| nullm => r(s, ([])) (* nothing placeholder for our null message *)

end.

Coq Methods

Inductive reliable_step : world -> world -> Prop :=
| step_input : forall w i n st' ms,

processInput n i ((localSt w) (key n)) = r(st', ms) ->
reliable_step w
(W (((localSt w) & {(key n) --> st'}), (ms ++ (inFlightMsgs w)),

((trace w) ++ [e(n, i)])))

| step_msg : forall w m n st' ms,
nextMessage n (inFlightMsgs w) = (p(n,m)) ->
processMsg n m ((localSt w) (key n)) = r(st', ms) ->
reliable_step w
(W(((localSt w) & {(key n) --> st'}), (ms ++ (pop (inFlightMsgs w) (p(n,m)))),

(trace w))).

Definition reliable_step_star := clos_refl_trans_n1 _ reliable_step.

Definition reachable (w : world) : Prop := reliable_step_star initWorld w.

Coq Methods

Theorem bool_vars_bool : forall w, reachable w ->
check_binvars_bin w bool_vars = true. (* Comment on setup of world state *)

Theorem one_fork : forall w, reachable w -> forks w = 1.

Theorem eating_imp_fork : forall w N, reachable w ->
N = A \/ N = B ->
localSt w N S = 2 -> localSt w N F = 1.

Theorem one_eater : forall w, reachable w ->
~(localSt w A S = 2 /\ localSt w B S = 2).

Code Inspection + Questions

Other Resources: Verdi

“framework from the University of
Washington to implement and formally
verify distributed systems”

http://verdi.uwplse.org/

Open source, nice blog intros

Verified System Transformers – prove safety
under certain conditions, will transform an
application into another which holds under a
different environment.

http://verdi.uwplse.org/

	Proving Safety of a Distributed Program
	Way Ahead:
	Program Orientation�“Dining” Distributed Lock
	Program Orientation�“Dining” Distributed Lock
	�Proof Structure
	Proof Structure
	Coq Methods
	Coq Methods
	Coq Methods
	Coq Methods
	Coq Methods
	Code Inspection + Questions
	Other Resources: Verdi

