
Euterpea in Agda

Yiyun Liu

University of Maryland

05/14/2019

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 1 / 22

Table of Contents

1 Euterpea 101

2 Equivalence Relation

3 Formalization in Agda

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 2 / 22

What is Euterpea

Euterpea is an EDSL originally designed for synthesizing music. It is
covered in the Haskell School of Music, a book which introduces basic
music synthesis and functional programming at the same time. Euterpea
provides the programmer a set of primitives, and a set of combinators
which can form more complex structures.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 3 / 22

What is Euterpea

Euterpea is an EDSL originally designed for synthesizing music. It is
covered in the Haskell School of Music, a book which introduces basic
music synthesis and functional programming at the same time. Euterpea
provides the programmer a set of primitives, and a set of combinators
which can form more complex structures.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 3 / 22

Primitives

data Primitive = Note Dur Pitch

| Rest Dur

There are two types of Primitives: Note and Rest

Each Note has a Duration and a Pitch.

Rest represents a pause in music. It does not produce any sound,
therefore the Rest constructor takes only a Duration is its
parameter.

Euterpea has a separate Music data type. In order to make use of the
Primitives, we need to inject them into Music type with the
constructor Prim :: Primitive -> Music

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 4 / 22

Primitives

data Primitive = Note Dur Pitch

| Rest Dur

There are two types of Primitives: Note and Rest

Each Note has a Duration and a Pitch.

Rest represents a pause in music. It does not produce any sound,
therefore the Rest constructor takes only a Duration is its
parameter.

Euterpea has a separate Music data type. In order to make use of the
Primitives, we need to inject them into Music type with the
constructor Prim :: Primitive -> Music

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 4 / 22

Primitives

data Primitive = Note Dur Pitch

| Rest Dur

There are two types of Primitives: Note and Rest

Each Note has a Duration and a Pitch.

Rest represents a pause in music. It does not produce any sound,
therefore the Rest constructor takes only a Duration is its
parameter.

Euterpea has a separate Music data type. In order to make use of the
Primitives, we need to inject them into Music type with the
constructor Prim :: Primitive -> Music

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 4 / 22

Primitives

data Primitive = Note Dur Pitch

| Rest Dur

There are two types of Primitives: Note and Rest

Each Note has a Duration and a Pitch.

Rest represents a pause in music. It does not produce any sound,
therefore the Rest constructor takes only a Duration is its
parameter.

Euterpea has a separate Music data type. In order to make use of the
Primitives, we need to inject them into Music type with the
constructor Prim :: Primitive -> Music

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 4 / 22

Compositions

t251' :: Music Pitch

t251' =

let dMinor7 = d 3 hn :=: c 4 hn :=: c 5 hn :=:

f 5 hn :=: c 6 hn

gDom7 = g 3 hn :=: f 4 hn :=: b 4 hn :=:

f 5 hn :=: b 5 hn

cMajor7 = c 3 hn :=: b 3 hn :=: b 4 hn :=:

e 5 hn :=: b 5 hn

in dMinor7 :+: gDom7 :+: cMajor7

:=: is used for parallel composition (played at the same time)

:+: is used for sequential composition (played one after the other).

The dMinor below uses :=: to produce seventh chords.

We can assemble those chords with :+: to form the II-V-I Jazz
progression.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 5 / 22

Compositions

t251' :: Music Pitch

t251' =

let dMinor7 = d 3 hn :=: c 4 hn :=: c 5 hn :=:

f 5 hn :=: c 6 hn

gDom7 = g 3 hn :=: f 4 hn :=: b 4 hn :=:

f 5 hn :=: b 5 hn

cMajor7 = c 3 hn :=: b 3 hn :=: b 4 hn :=:

e 5 hn :=: b 5 hn

in dMinor7 :+: gDom7 :+: cMajor7

:=: is used for parallel composition (played at the same time)

:+: is used for sequential composition (played one after the other).

The dMinor below uses :=: to produce seventh chords.

We can assemble those chords with :+: to form the II-V-I Jazz
progression.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 5 / 22

Compositions

t251' :: Music Pitch

t251' =

let dMinor7 = d 3 hn :=: c 4 hn :=: c 5 hn :=:

f 5 hn :=: c 6 hn

gDom7 = g 3 hn :=: f 4 hn :=: b 4 hn :=:

f 5 hn :=: b 5 hn

cMajor7 = c 3 hn :=: b 3 hn :=: b 4 hn :=:

e 5 hn :=: b 5 hn

in dMinor7 :+: gDom7 :+: cMajor7

:=: is used for parallel composition (played at the same time)

:+: is used for sequential composition (played one after the other).

The dMinor below uses :=: to produce seventh chords.

We can assemble those chords with :+: to form the II-V-I Jazz
progression.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 5 / 22

Compositions

t251' :: Music Pitch

t251' =

let dMinor7 = d 3 hn :=: c 4 hn :=: c 5 hn :=:

f 5 hn :=: c 6 hn

gDom7 = g 3 hn :=: f 4 hn :=: b 4 hn :=:

f 5 hn :=: b 5 hn

cMajor7 = c 3 hn :=: b 3 hn :=: b 4 hn :=:

e 5 hn :=: b 5 hn

in dMinor7 :+: gDom7 :+: cMajor7

:=: is used for parallel composition (played at the same time)

:+: is used for sequential composition (played one after the other).

The dMinor below uses :=: to produce seventh chords.

We can assemble those chords with :+: to form the II-V-I Jazz
progression.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 5 / 22

Compositions

t251' :: Music Pitch

t251' =

let dMinor7 = d 3 hn :=: c 4 hn :=: c 5 hn :=:

f 5 hn :=: c 6 hn

gDom7 = g 3 hn :=: f 4 hn :=: b 4 hn :=:

f 5 hn :=: b 5 hn

cMajor7 = c 3 hn :=: b 3 hn :=: b 4 hn :=:

e 5 hn :=: b 5 hn

in dMinor7 :+: gDom7 :+: cMajor7

:=: is used for parallel composition (played at the same time)

:+: is used for sequential composition (played one after the other).

The dMinor below uses :=: to produce seventh chords.

We can assemble those chords with :+: to form the II-V-I Jazz
progression.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 5 / 22

Modifiers

Euterpea also introduces a few modifiers into the object language. Those
modifiers, when interpreted, change the pitch or duration of the music.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 6 / 22

A Snippet from Canon in D

canonInD = tempo (90/120) (mainVoice :=: bassLine)

bassPhrase :: Music Pitch

bassPhrase = line . fmap ($ hn) $

[d 3, a 2, b 2, fs 2, g 2, d 2, g 2, a 2]

bassLine :: Music Pitch

bassLine = times 5 bassPhrase -- & keysig D Major

mainVoice :: Music Pitch

mainVoice = line [phrase0, phrase1, phrase2

,phrase3, phrase4] -- & keysig D Major

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 7 / 22

A Snippet from Canon in D

where

phrase0 = rest (dur bassPhrase)

phrase1 = line . fmap ($ hn) $

[fs 5, e 5, d 5, cs 5, b 4, a 4, b 4, cs 5]

phrase2 = phrase1 :=: (fmap ($ hn)

[d 5, cs 5, b 4, a 4, g 4, fs 4, g 4, a 4] & line)

phrase3 = phrase2 :=: (fmap (\n -> rest qn :+: n qn)

[a 4, a 4, fs 4, fs 4, d 4, d 4, d 4, g 4] & line)

phrase4 = phrase2 :=: ((fmap (\(n0,n1) ->

line [rest en, n0 en, n1 en, n0 en, rest qn, n0 qn])

[(a 4, d 5),(fs 4, b 4), (d 4, g 4)] & line) :+:

line [rest en, d 4 en, g 4 en, d 4 en, rest qn, g 4 qn])

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 8 / 22

Table of Contents

1 Euterpea 101

2 Equivalence Relation

3 Formalization in Agda

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 9 / 22

Informal Equational Reasoning from the Book

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

What is the relation between these two pieces of Music?

Even though they are not syntactically equal (since constructors do
not reduce), they are semantically equal (e.g. generating the same
sound when played).

The book admits the semantic equality implicitly for equational
reasoning.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 10 / 22

Informal Equational Reasoning from the Book

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

What is the relation between these two pieces of Music?

Even though they are not syntactically equal (since constructors do
not reduce), they are semantically equal (e.g. generating the same
sound when played).

The book admits the semantic equality implicitly for equational
reasoning.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 10 / 22

Informal Equational Reasoning from the Book

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

What is the relation between these two pieces of Music?

Even though they are not syntactically equal (since constructors do
not reduce), they are semantically equal (e.g. generating the same
sound when played).

The book admits the semantic equality implicitly for equational
reasoning.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 10 / 22

Informal Equational Reasoning from the Book

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

What is the relation between these two pieces of Music?

Even though they are not syntactically equal (since constructors do
not reduce), they are semantically equal (e.g. generating the same
sound when played).

The book admits the semantic equality implicitly for equational
reasoning.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 10 / 22

Informal Equational Reasoning from the Book

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

What is the relation between these two pieces of Music?

Even though they are not syntactically equal (since constructors do
not reduce), they are semantically equal (e.g. generating the same
sound when played).

The book admits the semantic equality implicitly for equational
reasoning.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 10 / 22

Equality Semantics

In Agda, we need to distinguish between semantic and syntactic
equivalence. To define the former, we need to define an equivalence
relation.

First, we construct a unidirectional arrow.

Second, we wrap the unidirectional arrow with a symmetric closure,
since we want the equality to go in both directions.

Wrapping the symmetric closure with a transitive closure, and we
obtain the equivalence relation we wanted.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 11 / 22

Equality Semantics

In Agda, we need to distinguish between semantic and syntactic
equivalence. To define the former, we need to define an equivalence
relation.

First, we construct a unidirectional arrow.

Second, we wrap the unidirectional arrow with a symmetric closure,
since we want the equality to go in both directions.

Wrapping the symmetric closure with a transitive closure, and we
obtain the equivalence relation we wanted.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 11 / 22

Equality Semantics

In Agda, we need to distinguish between semantic and syntactic
equivalence. To define the former, we need to define an equivalence
relation.

First, we construct a unidirectional arrow.

Second, we wrap the unidirectional arrow with a symmetric closure,
since we want the equality to go in both directions.

Wrapping the symmetric closure with a transitive closure, and we
obtain the equivalence relation we wanted.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 11 / 22

Equality Semantics

In Agda, we need to distinguish between semantic and syntactic
equivalence. To define the former, we need to define an equivalence
relation.

First, we construct a unidirectional arrow.

Second, we wrap the unidirectional arrow with a symmetric closure,
since we want the equality to go in both directions.

Wrapping the symmetric closure with a transitive closure, and we
obtain the equivalence relation we wanted.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 11 / 22

Symmetric Closure

Given a Poset (not necessarily total order) P

We define a new relation <> such that

a <> b ⇐⇒ a < b ∨ b < a

Intuitively, if a <> b is true, we know that a and b are comparable.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 12 / 22

Symmetric Closure

Given a Poset (not necessarily total order) P
We define a new relation <> such that

a <> b ⇐⇒ a < b ∨ b < a

Intuitively, if a <> b is true, we know that a and b are comparable.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 12 / 22

Symmetric Closure

Given a Poset (not necessarily total order) P
We define a new relation <> such that

a <> b ⇐⇒ a < b ∨ b < a

Intuitively, if a <> b is true, we know that a and b are comparable.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 12 / 22

Transitive Closure

Same as what we learned in class.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 13 / 22

Equivalence Closure

EqClosure : ∀ {a `} {A : Set a} → Rel A ` → Rel A (a t `)
EqClosure _∼_ = Star (SymClosure _∼_)

Equivalence Closure is defined as the composition of the
ReflexiveTransitive Closure (Star) and Symmetric Closure
(SymClosure)

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 14 / 22

Table of Contents

1 Euterpea 101

2 Equivalence Relation

3 Formalization in Agda

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 15 / 22

Definitions

data Primitive (A : Set) : Set where

Note : Dur → A → Primitive A

Rest : Dur → Primitive A

data Music (A : Set) : Set where

Prim : (Primitive A) → Music A

:+: : Music A → Music A → Music A

:=: : Music A → Music A → Music A

Modify : Control → Music A → Music A

Dur is a synonym of the set of natural numbers. While the set of natural
numbers is clearly not a good representation of the duration, it has the
nice semiring and lattice properties which will be handy in the proofs.
Rational numbers share the same properties but they are not
well-supported in the Agda standard library.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 16 / 22

Definitions

data Primitive (A : Set) : Set where

Note : Dur → A → Primitive A

Rest : Dur → Primitive A

data Music (A : Set) : Set where

Prim : (Primitive A) → Music A

:+: : Music A → Music A → Music A

:=: : Music A → Music A → Music A

Modify : Control → Music A → Music A

Dur is a synonym of the set of natural numbers. While the set of natural
numbers is clearly not a good representation of the duration, it has the
nice semiring and lattice properties which will be handy in the proofs.
Rational numbers share the same properties but they are not
well-supported in the Agda standard library.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 16 / 22

One-step Relation

The relation music-step captures the basic algebraic properties of Music.
We need to apply the EqClosure to support multiple-steps reasoning.
The definition is mutually recursive because we want a more useful
congruence axiom.

mutual

data music-step : Music A → Music A → Set where

tempo-mult : (r1 r2 : Dur) (m : Music A) →
music-step

(Modify (Tempo r1) (Modify (Tempo r2) m))

(Modify (Tempo (r1 * r2)) m)

trans-add : (p1 p2 : AbsPitch) (m : Music A) →
music-step

(Modify (Transpose p1) (Modify (Transpose p2) m))

(Modify (Transpose (p1 + p2)) m)

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 17 / 22

One-step Relation Cont.

-- ...

:+:-cong : {m m' n n' : Music A} →
-- music-step m m' ?

m ≈ m' →
n ≈ n' →
music-step (m :+: n) (m' :+: n')

:=:-cong : {m m' n n' : Music A} →
m ≈ m' →
n ≈ n' →
music-step (m :=: n) (m' :=: n')

music-equiv : Rel (Music A) Level.zero

music-equiv = EqClosure music-step

private

≈ = Setoid._≈_ (setoid (music-step))

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 18 / 22

Eliminating Rest 0

Rest 0 is essentially a neutral element in the algebra of Music. Some of
them are redundant and can be optimized away. The function
optimize-take2 (suggesting 1 failed attempt) eliminates all redundant
Rest 0s. Clearly, the syntactic equality is no longer true, but that’s the
very reason why we defined the semantic equality _≈_. With the
equivalence relation we defined, we can reason about the soundness of the
optimization function.

optimize-take2 : (m : Music A) → Music A

optimize-take2 (Prim x) = Prim x

optimize-take2 (m :+: m1) with

optimize-take2 m | empty-music? (optimize-take2 m)

optimize-take2 (m :+: m1)

| .(Prim (Rest 0)) | yes empty = optimize-take2 m1

-- ... rest of the definition omitted

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 19 / 22

Soundness Proof

optimize-sound-take2 : (m : Music A)

→ (m ≈ optimize-take2 m)

The soundness proof and the definition of optimization make extensive use
of the view pattern:

data Empty-Music? : Music A → Set where

empty : Empty-Music? (Prim (Rest 0))

empty-music? : (m : Music A) → Dec (Empty-Music? m)

In the definition of the optimization function, we could use a catch-all
pattern to simply the definition. However, Agda does not ”remember” the
catch-all pattern in the proofs which make use of the definition and would
therefore require us to explicitly destruct all terms. The number of cases
grows exponentially with respect to the number of parameters. The view
pattern can mitigate the issue by reducing the base of the exponential
function.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 20 / 22

Idempotence Proof

One extra property of the optimization function is idempotence. If the
optimization invoked twice produces a result that is different from
optimization invoked only once, that would imply our optimization is not
exhaustive.

optimize-idempotent-take2 : (m : Music A) →
optimize-take2 m ≡ optimize-take2 (optimize-take2 m)

Note how the theorem switches from semantic equality we used for
soundness proof to syntactic equality.

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 21 / 22

Fin

Yiyun Liu (University of Maryland) CMSC631 05/14/2019 22 / 22

	Euterpea 101
	Equivalence Relation
	Formalization in Agda

