Liquid-Structures

statically verifying data structure invariants with LiquidHaskell

John Kastner
LiquidHaskell

Banker’s Queue

Red-Black Tree
Introduction

- Goal: statically verify data structure invariants
- Data structure implementations adapted from *Purely Functional Data Structures*
- LiquidHaskell’s refinement types used to encode and statically check invariants
LiquidHaskell

- An extension to the Haskell programming language
- Haskell already has a strong static type system but, it lacks dependant types such as those in Coq
- LiquidHaskell lets you annotate types with logical predicates (refinements)
- This is less powerful than Coq’s dependant types because predicates must be solvable by an SMT solver
Refinement Types

Consider a trivial Haskell expression: 1
Its type: Int
This doesn’t precisely characterize the expression. Refinement types can be used to improve the specification.

```haskell
{-@ x :: {n:Int | n > 0} @-}
x :: Int
x = 1

{-@ y :: {n:Int | n == 1} @-}
y :: Int
y = 1
```
Refining Functions

Refinement types are much more interesting when applied to function argument types and return types.

Postconditions
{-@ abs :: n:Int -> {m:Int | m >= 0} @-}
abs n | n < 0 = - n
| otherwise = n

Preconditions
{-@ safeDiv :: n:Int -> d:{v:Int | v /= 0} -> Int @-}
safeDiv n d = n `div` d

Interesting Combinations
{-@ fib :: {n:Int | n >= 0} -> {v:Int | v >= 0} @-}
fib n | n <= 1 = n
| otherwise = fib (n - 1) + fib (n - 2)
Refining Data Types

- Just like functions, data types can be refined.
- This defines the usual cons list but, the tail is recursively defined as a list where each element must be less than or equal the head.

```haskell
{-# data List a = Nil
  | Cons {hd :: a,
         tl :: List {v : a | v >= hd}}
 #-}
{-# measure llen :: List a -> Nat
  llen Nil = 0
  llen (Cons _ tl) = 1 + llen tl
 #-}
list_good = Cons 1 (Cons 2 Nil)
{- list_bad = Cons 2 (Cons 1 Nil) -}
```
Banker’s Queue
Banker’s Queue

- A Queue data structure designed for functional programming languages
- Provides efficient read access to head and append access to tail
- Maintains two lists: the first is some prefix of the queue while the second is the remaining suffix of the queue
- The invariant is that the prefix list cannot be shorter than the suffix list
Banker’s Queue Datatype

- The interesting refinement type is on `lenr` which states that the length of the rear must be less than or equal to the length of the front.
- The other refinements ensure the stored lengths are in fact the real lengths.

```haskell
{-@ data BankersQueue a = BQ { lenf :: Nat, 
    f :: {v:[a] | len v == lenf}, 
    lenr :: {v:Nat | v <= lenf}, 
    r :: {v:[a] | len v == lenr} 
} @-}

{-@ measure qlen :: BQ a -> Nat 
    qlen (BQ f _ r _) = f + r @-}

type BQ a = BankersQueue a
```
Catching a Violated Invariant

- Using this definition, (some) errors will be automatically detected

\[\text{snoc} \ (\text{BQ} \ \text{lenf} \ f \ \text{lenr} \ r) \ x = \text{BQ} \ \text{lenf} \ f \ (\text{lenr}+1) \ (x:r) \]

- LiquidHaskell finds that \text{snoc} does not maintain the length invariant between the front and rear

\[165 \mid \text{snoc} \ (\text{BQ} \ \text{lenf} \ f \ \text{lenr} \ r) \ x = \text{BQ} \ \text{lenf} \ f \ (\text{lenr}+1) \ (x:r) \]

Inferred type
\[
\text{VV} : \{v : \text{GHC.Types.Int} \mid v == \text{lenr} + 1\}
\]

not a subtype of Required type
\[
\text{VV} : \{\text{VV} : \text{GHC.Types.Int} \mid \text{VV} \geq 0 \\
&& \text{VV} \leq \text{lenf}\}
\]
Smart Constructor

- How can a queue be constructed if the invariant is not known?
- Write a function to massage data with weaker constraints until the invariant holds.

```haskell
{-@ check ::
  vlenf : Nat ->
  {v:[_] | len v == vlenf} ->
  vlenr : Nat ->
  {v:[_] | len v == vlenr} ->
  {q:BQ _ | qlen q == (vlenf + vlenr)}
@-}

check lenf f lenr r =
  if lenr <= lenf then
    BQ lenf f lenr r
  else
    BQ (lenf + lenr) (f ++ (reverse r)) 0 []
```
Banker’s Queue Functions

Snoc
- An element can be added to a queue
- This maintains invariants and increments the length
\[
\{-@ \text{snoc} :: q0 : \text{BQ} \ a \rightarrow a \rightarrow \\
\quad \{q1 : \text{BQ} \ a \mid (\text{qlen} \ q1) = (\text{qlen} \ q0) + 1\} \ @-\}
\text{snoc} \ (\text{BQ} \ \text{lenf} \ f \ \text{lenr} \ r) \ x = \text{check} \ \text{lenf} \ f \ (\text{lenr}+1) \ (x:r)
\]

Head and tail
- After adding an element, it can be retrieved and removed
- Both functions require non-empty queues
\[
\{-@ \text{head} :: \{q : \text{BQ} \ a \mid \text{qlen} \ q \neq 0\} \rightarrow a \ @-\}
\text{head} \ (\text{BQ} \ \text{lenf} \ (x : f') \ \text{lenr} \ r) = x
\]
\[
\{-@ \text{tail} :: \{q0 : \text{BQ} \ a \mid \text{qlen} \ q0 \neq 0\} \rightarrow \\
\quad \{q1 : \text{BQ} \ a \mid (\text{qlen} \ q1) = (\text{qlen} \ q0) - 1\} \ @-\}
\text{tail} \ (\text{BQ} \ \text{lenf} \ (x : f') \ \text{lenr} \ r) = \text{check} \ (\text{lenf} - 1) \ f' \ \text{lenr} \ r
\]
Red-Black Tree
Red-Black Tree

- A Red-Black Tree is a binary search tree with two key invariants.
 - **Red Invariant**: No red node has a red child.
 - **Black Invariant**: Every path from the root to an empty node contains the same number of black nodes.
- The invariants keep the tree approximately balanced.
- When invariants are violated, the tree is rotated in such a way that they are restored.
Red-Black Tree Datatype

- BST ordering is enforced by recursive refinements on the sub-trees.
- Red and black invariants are enforced by respective predicates

```haskell
data Color = Red | Black deriving Eq
{-@ data RedBlackTree a = Empty |
    Tree { color :: Color,
            val :: a,
            left :: {v:RedBlackTree {vv:a | vv < val} |
                       RedInvariant color v},
            right :: {v:RedBlackTree {vv:a | vv > val} |
                       RedInvariant color v &&
                       BlackInvariant v left}}@-}

{-@ predicate RedInvariant C S =
    (C == Red) ==> (getColor S /= Red) @-}

{-@ predicate BlackInvariant S0 S1 =
    (blackHeight S0) == (blackHeight S1) @-}
```
Red-Black Tree Insertion

- We can try to write an insertion function for red-black trees
- This is nontrivial and we might do it wrong

```haskell
insert x Empty = Tree Red x Empty Empty
insert x t@(Tree c y a b) | x<y = Tree c y (insert x a) b
| x>y = Tree c y a (insert x b)
| otherwise = t
```

- LiquidHaskell will generate a warning if this error causes the data structures invariants to no longer hold

284 | | x < y = Tree c y (insert x a) b

```
Inferred type
VV:{v:(Main.RedBlackTree a##xo) | blackHeight v >= 0
    && v == ?a}

not a subtype of Required type
VV:{VV:(Main.RedBlackTree {VV:a##xo | VV < y}) |
    c == Red => getColor VV /= Red}
```
Red-Black Tree Balancing

- There is a function to fix an incomplete Red-Black Tree

Diagram taken from *Purely Function Data Structures*
Red-Black Tree (Real) Insertion

{-@ insert :: e:a -> v:RedBlackTree a -> RedBlackTree a @-}

insert x s = forceRedInvarient (rb_insert_aux x s)

where forceRedInvarient (WeakRedInvariant _ e a b) =
 Tree Black e a b

{-@ rb_insert_aux :: forall a. Ord a =>
 x:a ->
 s:RedBlackTree a ->
 {v:WeakRedInvariant a |
 (getColor s /= Red ==> HasStrongRedInvariant v) &&
 (weakBlackHeight v) == (blackHeight s)}
@-}

rb_insert_aux x Empty = WeakRedInvariant Red x Empty Empty

rb_insert_aux x (Tree c y a b)
| x < y = balanceLeft c y (rb_insert_aux x a) b
| x > y = balanceRight c y a (rb_insert_aux x b)
| otherwise = (WeakRedInvariant c y a b)
An Extra Data Type

- During insertions and balancing, there are values that are almost red-black trees but are missing part of the red invariant.
- This type gives an easy way to represent these values and a way to describe when the invariant does hold.

```haskell
{-@ data WeakRedInvariant a = WeakRedInvariant {  
  weakColor :: Color,  
  weakVal :: a,  
  weakLeft :: RedBlackTree (vv:a | vv<weakVal),  
  weakRight :: {v:RedBlackTree (vv:a | vv>weakVal)|
    (weakColor /= Red ||
    getColor (weakLeft) /= Red ||
    getColor v) /= Red) &&
    (blackHeight v) == (blackHeight weakLeft)} @-}  

{-@ predicate HasStrongRedInvariant Wri =  
  (weakColor Wri) == Red ==>  
  (getColor (weakLeft Wri) /= Red &&
  getColor (weakRight Wri) /= Red) @-}  
```
Red-Black Tree Balancing Functions

- Smart constructor for red-black trees
- Only partially guarantees the red invariant
- Full invariant obtained in other calls to balance during recursion of after all recursion finishes

{-@ balanceLeft :: forall a. Ord a =>
 c:Color ->
 t:a ->
 l:{v:WeakRedInvariant {vv:a | vv < t} |
 c == Red ==> HasStrongRedInvariant v} ->
 r:{v:RedBlackTree {vv:a | vv > t} |
 RedInvariant c v &&
 (blackHeight v) == (weakBlackHeight l)} ->
 {v:WeakRedInvariant a |
 (c /= Red ==> HasStrongRedInvariant v) &&
 (weakBlackHeight v) ==
 (if c==Black then 1 else 0)+weakBlackHeight l}
@-}
{-@ balanceRight :: forall a. Ord a =>
 c:Color ->
 t:a ->
 l:{v:RedBlackTree {vv:a | vv < t} |
 RedInvariant c v} ->
 r:{v:WeakRedInvariant {vv:a | vv > t} |
 (c == Red ==> HasStrongRedInvariant v) &&
 (weakBlackHeight v) == (blackHeight l)} ->
 {v:WeakRedInvariant a |
 (c /= Red ==> HasStrongRedInvariant v) &&
 (weakBlackHeight v) ==
 (if c==Black then 1 else 0)+blackHeight l}
@-}