Lecture Note 10

April 30, 2018

1 Social Networks

- Detecting Triangles
- Finding dense subgraphs
- Community detection

2 Find Dense Component in Graph

2.1 Problem Definition

Given a graph G(V, E), find a subset $S \subseteq V$ such that the ratio $\frac{|E(S)|}{|S|}$ is maximized, where $E(S) = \{(u, v) | (u, v) \in E, u, v \in S\}$. Or in other words:

$$S = \arg\max_{S \subseteq V} \frac{|E(S)|}{|S|}.$$

2.2 Charikar Greedy Algorithm

This problem can be solved optimally in polynomial time, but it is too slow on large graphs. If we do not need exact solution, there is a 2-approx greedy algorithm that runs in linear time. Ref: Moses Charikar, APPROX 2000, link

2.2.1 Algorithm

The algorithm maintains a subset S of vertices. Initially $S \leftarrow V$. In each iteration, the algorithm identifies i_{\min} , the vertex of minimum degree in the subgraph induced by S. The algorithm removes i_{\min} from the set S and moves on to the next iteration. The algorithm stops when the set S is empty. Of all the sets S constructed during the execution of the algorithm, the set S maximizing density is returned as the output of the algorithm.

2.2.2 Pseudo code

- $\bullet \ S \leftarrow V$
- SOL = V
- While $S \neq \emptyset$
 - \$v \leftarrow \$ a vertices in S whose degree in G[S] (subgraph induced by S) is minimized

 $\begin{array}{l} - \mbox{ Remove v from S} \\ - \mbox{ If density of $G[S] > G[SOL]$} \\ * \mbox{ SOL } \leftarrow S \end{array}$

2.2.3 Analysis

- Let c^* be the first node we delete from S^* , degree of this node $\geq \lambda$
- \Rightarrow s nodes have deg $\geq \lambda$
- $\Rightarrow \# \text{ edges} \ge \frac{\lambda s}{2}$
- \Rightarrow density $\geq \frac{\lambda}{2}$

2.3 LP formulation

 x_u is an indicator variable, 0 indicating it not in S, $\frac{1}{|S|}$ if it is in S. y_e indicating an edge e = (u, v) in S or not. It is $\frac{1}{|S|}$ if $u, v \in S$, and 0 otherwise. The target function then is

$$\frac{1}{|S|} \cdot |\{ \text{ of edges in } S\}| = \frac{|E(S)|}{|S|}$$

2.3.1 LP formulation

$$\max \sum_{e} y_{e}$$

Subject to $y_{e} \leq x_{u}, y_{e} \leq x_{v} \quad \forall e = (u, v)$
$$\sum_{v \in V} x_{v} = 1$$
$$0 \leq y_{e} \leq 1$$
$$0 \leq x_{v} \leq 1$$

3 Counting Triangles

Count the number of triangles in a graph

3.1 Number of Triangles in a Random graph

- *m* edges, *n* nodes.
- Probability that there is an edge between a certain pair of vertices:

$$p = \frac{m}{\frac{1}{2} \cdot n(n-1)} = \left(\frac{2m}{n^2}\right)$$

• Expected number of triangles:

$$\binom{n}{3} \cdot p^3 \simeq (\frac{1}{6}n^3) \cdot p^3$$

• Plugging in *p*:

$$\frac{1}{6} \cdot n^3 \cdot \frac{8m^3}{n^6} = \frac{4}{3} \left(\frac{m}{n}\right)^3$$

3.2 Algorithm

- $\operatorname{count} \leftarrow 0$
- For every edge (u, v), suppose deg(u) < deg(v) with out loss of generality
 - For w in neighbor list of u
 - * If w is a neighbor of v, then count + = 1

3.3 Arboricity

Arboricity is a measure of how sparse a graph is. The arboricity α of a graph is defined as

$$\max_{S \subseteq V} \lceil \frac{E(S)}{|S| - 1} \rceil.$$

Another closely related concept is degeneracy, which is defined as the smallest value d such that every subgraph has a vertex of degree at most d. For every graph, $\alpha \leq d \leq 2\alpha + 1$, so degeneracy and arboricity are of the same order, or $d = O(\alpha)$.

For social graph of even millions of nodes, arboricity is pretty small, about 100-300. As a special case, any planar graph has arboricity at most 3. One fact about arboricity is as follows:

$$\sum_{(u,v)\in E} \min(\deg(u), \deg(v)) = O(\alpha \cdot m).$$

3.4 Time Analysis

For every edge (u, v), the time is $\min(\deg(u), \deg(v))$. So the total time complexity of the algorithm above is

$$\sum_{(u,v)\in E}\min(\deg(u),\deg(v))=O(\alpha\cdot m).$$