Lecture Note 10

April 30, 2018

1 Social Networks

- Detecting Triangles
- Finding dense subgraphs
- Community detection

2 Find Dense Component in Graph

2.1 Problem Definition

Given a graph $G(V, E)$, find a subset $S \subseteq V$ such that the ratio $\frac{|E(S)|}{|S|}$ is maximized, where $E(S)=$ $\{(u, v) \mid(u, v) \in E, u, v \in S\}$. Or in other words:

$$
S=\arg \max _{S \subseteq V} \frac{|E(S)|}{|S|} .
$$

2.2 Charikar Greedy Algorithm

This problem can be solved optimally in polynomial time, but it is too slow on large graphs. If we do not need exact solution, there is a 2 -approx greedy algorithm that runs in linear time. Ref: Moses Charikar, APPROX 2000, link

2.2.1 Algorithm

The algorithm maintains a subset S of vertices. Initially $S \leftarrow V$. In each iteration, the algorithm identifies $i_{\text {min }}$, the vertex of minimum degree in the subgraph induced by S. The algorithm removes $i_{\min }$ from the set S and moves on to the next iteration. The algorithm stops when the set S is empty. Of all the sets S constructed during the execution of the algorithm, the set S maximizing density is returned as the output of the algorithm.

2.2.2 Pseudo code

- $S \leftarrow V$
- $\mathrm{SOL}=V$
- While $S \neq \emptyset$
- $\$ \mathrm{v} \leftarrow \$$ a vertices in S whose degree in $G[S]$ (subgraph induced by S) is minimized
- Remove v from S
- If density of $G[S]>G[\mathrm{SOL}]$

$$
* \mathrm{SOL} \leftarrow S
$$

2.2.3 Analysis

- Let c^{*} be the first node we delete from S^{*}, degree of this node $\geq \lambda$
- $\Rightarrow s$ nodes have deg $\geq \lambda$
- $\Rightarrow \#$ edges $\geq \frac{\lambda s}{2}$
- \Rightarrow density $\geq \frac{\lambda}{2}$

2.3 LP formulation

x_{u} is an indicator variable, 0 indicating it not in $S, \frac{1}{|S|}$ if it is in S. y_{e} indicating an edge $e=(u, v)$ in S or not. It is $\frac{1}{|S|}$ if $u, v \in S$, and 0 otherwise. The target function then is

$$
\left.\left.\frac{1}{|S|} \cdot \right\rvert\,\{\text { of edges in } S\} \right\rvert\,=\frac{|E(S)|}{|S|}
$$

2.3.1 LP formulation

$$
\begin{gathered}
\max \sum_{e} y_{e} \\
\text { Subject to } \quad y_{e} \leq x_{u}, y_{e} \leq x_{v} \quad \forall e=(u, v) \\
\sum_{v \in V} x_{v}=1 \\
0 \leq y_{e} \leq 1 \\
0 \leq x_{v} \leq 1
\end{gathered}
$$

3 Counting Triangles

Count the number of triangles in a graph

3.1 Number of Triangles in a Random graph

- m edges, n nodes.
- Probability that there is an edge between a certain pair of vertices:

$$
p=\frac{m}{\frac{1}{2} \cdot n(n-1)}=\left(\frac{2 m}{n^{2}}\right)
$$

- Expected number of triangles:

$$
\binom{n}{3} \cdot p^{3} \simeq\left(\frac{1}{6} n^{3}\right) \cdot p^{3}
$$

- Plugging in p :

$$
\frac{1}{6} \cdot n^{3} \cdot \frac{8 m^{3}}{n^{6}}=\frac{4}{3}\left(\frac{m}{n}\right)^{3}
$$

3.2 Algorithm

- count $\leftarrow 0$
- For every edge (u, v), suppose $\operatorname{deg}(u)<\operatorname{deg}(v)$ with out loss of generality
- For w in neighbor list of u
* If w is a neighbor of v, then count $+=1$

3.3 Arboricity

Arboricity is a measure of how sparse a graph is. The arboricity α of a graph is defined as

$$
\max _{S \subseteq V}\left\lceil\frac{E(S)}{|S|-1}\right\rceil
$$

Another closely related concept is degeneracy, which is defined as the smallest value d such that every subgraph has a vertex of degree at most d. For every graph, $\alpha \leq d \leq 2 \alpha+1$, so degeneracy and arboricity are of the same order, or $d=O(\alpha)$.

For social graph of even millions of nodes, arboricity is pretty small, about 100-300. As a special case, any planar graph has arboricity at most 3. One fact about arboricity is as follows:

$$
\sum_{(u, v) \in E} \min (\operatorname{deg}(u), \operatorname{deg}(v))=O(\alpha \cdot m)
$$

3.4 Time Analysis

For every edge (u, v), the time is $\min (\operatorname{deg}(u), \operatorname{deg}(v))$. So the total time complexity of the algorithm above is

$$
\sum_{(u, v) \in E} \min (\operatorname{deg}(u), \operatorname{deg}(v))=O(\alpha \cdot m)
$$

