## Lecture Note 4

## 1 K-center

### 1.1 History

- K-center (Gonzalez 85)
- K-median (Hochbaum-Shmoys86)


### 1.2 Problem

- Define $c(i, j)$ to be the distance between $i$ and $j$.
- Full set: $S$
- Goal: select $S^{\prime} \subseteq S$, where $\left|S^{\prime}\right|=k$.
- $\operatorname{cost}(v)$ is defined as $\min _{u \in S^{\prime}} c(u, v)$.
- K-center: $\min _{\max }^{v} \operatorname{cost}(v)$,
- K-median: $\min \sum_{j} \operatorname{cost}(v)$


### 1.3 NP-completeness

Takes $O\left(n^{k}\right)$ time, and will only work for small $k$.

- We cannot guarantee optimal solution, but we can guarantee that $\max _{v} \operatorname{cost}(v) \leq 2 \cdot \operatorname{cost}$ for an optimal placement.


### 1.4 Hochbaum-Shmoys Algorithm

- Guess optimal distance $D$
- While there are still uncovered nodes
- Pick an uncovered node $v$
- Assign everything in $2 D$ to it, and mark them as covered


### 1.5 Gonzalez's Algorithm

- Initially pick any node $v_{0}$ as center, add it into $S$
- For $i=1$ to $k-1$ :
- Find the $v_{i}$ node farthest to $S$, where distance is defined as $\operatorname{dist}(v)=\min _{u \in S} c(u, v)$.
- Add $v_{i}$ to $S$.
- Return $S$.


### 1.6 Details

Details and proofs of previous two algorithms can be find here link

## 2 Invited speaker

- David Mount, email: mount at cs.umd.edu


### 2.1 Applications

- Geometric Approximation Algorithms
- Can be used in machine learning, and learn property vectors: $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
- Given point set $P \subseteq \mathbb{R}^{d}$. There are two cases:
- $d$ small: $2,3,4, \ldots, 20$
- $d$ large: hundreds, thousands... We need dimension reduction.
- Euclidean distance


### 2.2 Topics

- Kernels \& directional width
- Clustering
- Additive costs
- Multiplicative costs
- Streaming [ Very large data, small memory ]


### 2.3 Coreset

### 2.3.1 Motivation

Given large data set (reals)

1. Want (Random sample + sample mean \& sample median)

- average
- median
- min
- max

2. Why we do not randomly sample (counter-example)

- Given points $P$ in plane, compute diameter, which is defined as $\operatorname{diam}(P)=\max _{p, q \in P} \operatorname{dist}(p, q)$.
- Random sampling will not work


### 2.3.2 Definition

Given problem $X, \epsilon>0$ [error parameter], a point set $P$, a coreset for $P$ (w.r.t $X$ ) is a subset $Q \subseteq P$ s.t. answer for $X$ on $Q$ is within error $\epsilon$ to answer for $\bar{X}$ on $P$.

- E.g. $\operatorname{cost}(P): \frac{\operatorname{cost}(P)}{1+\epsilon} \leq \operatorname{cost}(Q) \leq \operatorname{cost}(P)$, much smaller set behaves similar to $P$ w.r.t. $X$.


### 2.3.3 Coreset for diameter? First try

- $O(n)$-estimate for diameter
- Pick any point
- Find dist to farthest
$-z \leq \operatorname{diam}(q) \leq 2 \cdot z$


### 2.3.4 Algorithm

Make a grid, diameter of each cell $=\epsilon \cdot Z / 2 \leq \frac{\epsilon}{2} \operatorname{diam}(P)$.

- In $O(1)$ time, can determine which cell contains any point (floor/integer division required)
- Use hashing to assign points to cell
- $Q \leftarrow$ take one point from every non-empty grid cell


### 2.3.5 How large is $Q$ ?

- \#cells on a side $\leq \frac{\operatorname{diam}(P)}{(\epsilon / 2) \operatorname{diam}(P)}=2 / \epsilon$
- Total \#cells $\leq(2 / \epsilon)^{d}=O\left(\left(\frac{1}{\epsilon}\right)^{d}\right)$
- $\operatorname{diam}(Q) \leq \operatorname{diam}(P)$, since $Q$ is a subset
- $\operatorname{diam}(Q) \geq \operatorname{diam}(P)-2 \underbrace{(\epsilon / 2 \cdot \operatorname{diam}(P))}_{\text {Grid cell size }}=\operatorname{diam}(P)(1-\epsilon)$.


### 2.3.6 Diameter

- Compute $\epsilon$-coreset for diameter in time $O\left(n+(1 / \epsilon)^{d}\right)$ of size $O\left((1 / \epsilon)^{d}\right)$
- Run naive on coreset in time: $O\left((1 / \epsilon)^{2 d}\right)$, comparing to $O\left(n^{2}\right)$ exact algorithm.


### 2.3.7 Our $(1 / \epsilon)^{d}$ coreset is too big

- Reason: grabs too many internal points
- Solution: Build an $\epsilon / 2 \cdot \operatorname{diam}(P)$ size grid on one facet and extend it through
- \#cylinders $O\left((1 / \epsilon)^{d-1}\right)$.
- $Q \leftarrow$ Take top most and bottom most from each cylinder.
- Claim: $Q$ is $\epsilon$-coreset for diameter
- $Q$ is an $\epsilon$-coreset for diameter
- $Q$ is an $\epsilon$-coreset for directional width
- Query given unit vector $\vec{u}$ width in direction $\vec{u}$ that minimize distance between two parallel hyperplanes orthogonal to $\vec{u}$ that sandwich $P$
- Proof: Fix any $\vec{u}, \omega(\vec{u}, Q) \geq \omega(\vec{u}, P)-2\left(\frac{\epsilon}{2} \cdot \operatorname{diam}(P)\right)$.


### 2.3.8 A trick

- If it is fat: good
- If it is skinny: fattening transformation


### 2.3.9 Size of coreset

$\left.(1 / \epsilon)^{d}\right) \rightarrow(1 / \epsilon)^{d-1} \rightarrow(1 / \epsilon)^{\frac{d-1}{2}}$. The last bound is a new result.

## $2.4 \epsilon$-coreset for $\mathbf{k}$-center

- Given $P \subseteq \mathbb{R}^{d}$ and $k$


### 2.4.1 Show: Existential result $\exists$-coreset $Q$ for k-center

- Known: Gonzalez alg (the algorithm mentioned before). $\rightarrow r_{G} \leq 2 \cdot r_{\text {opt }}$.
- Target: $|Q|=k\left(\frac{1}{\epsilon}\right)^{d}$
- Error: $\epsilon \cdot r_{o p t}$

