Lecture Note 4

1 K-center

1.1 History

- K-center (Gonzalez 85)
- K-median (Hochbaum-Shmoys86)

1.2 Problem

- Define c(i, j) to be the distance between i and j.
- Full set: S
- Goal: select $S' \subseteq S$, where |S'| = k.
- $\operatorname{cost}(v)$ is defined as $\min_{u \in S'} c(u, v)$.
- K-center: $\min \max_{v} \operatorname{cost}(v)$,
- K-median: $\min \sum_{j} cost(v)$

1.3 NP-completeness

Takes $O(n^k)$ time, and will only work for small k.

• We cannot guarantee optimal solution, but we can guarantee that $\max_{v} \operatorname{cost}(v) \leq 2 \cdot \operatorname{cost}$ for an optimal placement.

1.4 Hochbaum-Shmoys Algorithm

- Guess optimal distance D
- While there are still uncovered nodes
 - $-\,$ Pick an uncovered node v
 - Assign everything in 2D to it, and mark them as covered

1.5 Gonzalez's Algorithm

- Initially pick any node v_0 as center, add it into S
- For i = 1 to k 1:
 - Find the v_i node farthest to S, where distance is defined as $dist(v) = \min_{u \in S} c(u, v)$.
 - Add v_i to S.
- Return S.

1.6 Details

Details and proofs of previous two algorithms can be find here link

2 Invited speaker

• David Mount, email: mount at cs.umd.edu

2.1 Applications

- Geometric Approximation Algorithms
- Can be used in machine learning, and learn property vectors: $(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$.
- Given point set $P \subseteq \mathbb{R}^d$. There are two cases:
 - -d small: 2, 3, 4, ..., 20
 - -~d large: hundreds, thousands... We need dimension reduction.
- Euclidean distance

2.2 Topics

- Kernels & directional width
- Clustering
 - Additive costs
 - Multiplicative costs
- Streaming [Very large data, small memory]

2.3 Coreset

2.3.1 Motivation

Given large data set (reals)

- 1. Want (Random sample + sample mean & sample median)
 - average
 - median

- $\bullet \min$
- max
- 2. Why we do not randomly sample (counter-example)
 - Given points P in plane, compute diameter, which is defined as diam $(P) = \max_{p,q \in P} dist(p,q)$.
 - Random sampling will not work

2.3.2 Definition

Given problem X, $\epsilon > 0$ [error parameter], a point set P, a coreset for P (w.r.t X) is a subset $Q \subseteq P$ s.t. answer for X on Q is within error ϵ to answer for X on P.

• E.g. $\operatorname{cost}(P): \frac{\operatorname{cost}(P)}{1+\epsilon} \leq \operatorname{cost}(Q) \leq \operatorname{cost}(P)$, much smaller set behaves similar to P w.r.t. X.

2.3.3 Coreset for diameter? First try

- O(n)-estimate for diameter
 - Pick any point
 - Find dist to farthest
 - $-z \leq \operatorname{diam}(q) \leq 2 \cdot z$

2.3.4 Algorithm

Make a grid, diameter of each cell = $\epsilon \cdot Z/2 \leq \frac{\epsilon}{2} \operatorname{diam}(P)$.

- In O(1) time, can determine which cell contains any point (floor/integer division required)
- Use hashing to assign points to cell
- $Q \leftarrow$ take one point from every non-empty grid cell

2.3.5 How large is Q?

- #cells on a side $\leq \frac{\operatorname{diam}(P)}{(\epsilon/2)\operatorname{diam}(P)} = 2/\epsilon$
- Total #cells $\leq (2/\epsilon)^d = O((\frac{1}{\epsilon})^d)$
- $\operatorname{diam}(Q) \leq \operatorname{diam}(P)$, since Q is a subset
- diam $(Q) \ge$ diam $(P) 2\underbrace{(\epsilon/2 \cdot \text{diam}(P))}_{\text{Grid cell size}} =$ diam $(P)(1 \epsilon).$

2.3.6 Diameter

- Compute ϵ -coreset for diameter in time $O(n + (1/\epsilon)^d)$ of size $O((1/\epsilon)^d)$
- Run naive on coreset in time: $O((1/\epsilon)^{2d})$, comparing to $O(n^2)$ exact algorithm.

2.3.7 Our $(1/\epsilon)^d$ coreset is too big

- Reason: grabs too many internal points
- Solution: Build an $\epsilon/2 \cdot \operatorname{diam}(P)$ size grid on one facet and extend it through
 - #cylinders $O((1/\epsilon)^{d-1})$.
 - $Q \leftarrow$ Take top most and bottom most from each cylinder.
- Claim: Q is ϵ -coreset for diameter
- Q is an ϵ -coreset for diameter
- Q is an ϵ -coreset for directional width
 - Query given unit vector \vec{u} width in direction \vec{u} that minimize distance between two parallel hyperplanes orthogonal to \vec{u} that sandwich P
 - Proof: Fix any $\vec{u}, \, \omega(\vec{u}, Q) \ge \omega(\vec{u}, P) 2(\frac{\epsilon}{2} \cdot \operatorname{diam}(P)).$

2.3.8 A trick

- If it is fat: good
- If it is skinny: fattening transformation

2.3.9 Size of coreset

 $(1/\epsilon)^d) \to (1/\epsilon)^{d-1} \to (1/\epsilon)^{\frac{d-1}{2}}$. The last bound is a new result.

2.4 ϵ -coreset for k-center

• Given $P \subseteq \mathbb{R}^d$ and k

2.4.1 Show: Existential result \exists -coreset Q for k-center

- Known: Gonzalez alg (the algorithm mentioned before). $\rightarrow r_G \leq 2 \cdot r_{opt}$.
- Target: $|Q| = k(\frac{1}{\epsilon})^d$
- Error: $\epsilon \cdot r_{opt}$