Lecture Note 5

1 Linear Programming

1.1 General form

We are intereested in solving the following optimization problems: we want to optimize a linear
objective function(}_; c;j - z;j, where ¢; are constants, z; are variables) subject to linear inequal-
ity /equality constraints. Here is the general form of linear programming.

min E Cj'Ij
J

s.t Vi, Z aij - T; > b;
J
Vi, Z; Z 0
1.2 Algorithms to solve LP

e Simplex: by Dantzig. This algorithm is fast in practice, but in worst case takes exponential
time

e Ellipsoid Algorithm: by Khachiyan in 70’s. In polynomial time.

e Interial Point Algorithm: by Karmarkar in early 80’s. Also polynomial time.

1.3 Comparing with Integer Programming (IP)
e LP can be solved in polynomial time

e [P is NP-complete

1.4 Example with Traveling Salesman Problem (TSP)

e Target function:
min Y X - d(i,)
(i,J)eE
We want X(; ;) to be 1 if and only if (i,j) € TOUR, and 0 otherwise. We need a set of
constraints to make it work

e First try:
Vo, X =2, and Y X5 < 2
i i
May not work, as it might give many disconnected cycles instead of a single tour

e Fix: For every subset, the number of out-degree is at least 2.

2 K-center problem

2.1 Problem description

n points, and want to select a set S C points where |S| = k. Define cost(p, S) = mingeg d(p, q), and

we want to minimize

min max cost(p, S)
S p

2.2 Gonzalez Algorithm
e S7 < any point
e For i =2tok do

— S, < point with highest cost relative to {S1,...,Si—1}

2.3 Streaming
link

The stream would be x1, z2,x3,.... The subset we are maintaining is C' = {c1, ¢2, c3, . .

where k' < k. rj, is a lower bound on the optimal solution.

2.4 Algorithm
e (C = First k distinct points
e g =0,p=1
e For stage p (x; arrives)
— If d(z;,C') < 4rp_1, then forget x;
— Else
x Add x; to C
« If |C| > k
_ : d(C]',Cl)
- Let rp = ming, qec =5

+ Recluster (C,)
- p=p-+ 1, and we move to the next stage

2.4.1 Recluster (C, rp)
o O+ C
e For all pair ¢j,¢; € C'
— Ifd(cj,c) <4-rp
* Drop ¢; or ¢ from C".

e // Let C’ is now a maximal subset of C' such that Vc;, ¢ € C' have dist > 4 - .

o C ('

. ,Ck/},

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2051&rep=rep1&type=pdf

2.4.2 Final answer:

Subset C, and distance 8rp,.

2.5 Analysis

We have the following properties
e Lemma 1: Vej, ¢ € C,d(cj,¢p) > 4rp_1.
e Lemma 2: r, > 2r, 4
e Lemma 3: max, d(z,C) < 8r,

Lemma 1 guarantees that nodes in C' are not too far from each other, Lemma 2 guarantees
that dropped points are not too far from C. Lemma 3 guarangees that r, increases quickly.

The correctness of first lemma is trivial, our Recluster procedure guarrantees this. Now we
prove Lemma 2 with Lemma 1. We prove it by induction on p. When p = 1, it is obvious that
r1 > ro = 0. Suppose this lemma is true when p = ¢, we prove it is also true when p = ¢ + 1.

Since it is true when p = t, we have r; > 2r;_1. We moved from stage t to stage t + 1 because
we have to merge at least one pair of node in C. So ryyp1 = ming; c.ec M > % = 2r¢, and we
are done.

As for Lemma 3, this property will hold as long as we are not reclustering. At stage p, we have
max, d(z,C) < 8 - rp, which means the farthest node z from C' is closer than 8r, (or d(z,c;) < 8r)
for some ¢; € C'). When we move to the next stage p + 1, ¢; might have been dropped, since its
distance to some other ¢; is less than 4r,;1. So the distance from z to ¢; is upper bounded by

8rp +4rpr1 < 4rpp +4rpp = 8rpp.

	Linear Programming
	General form
	Algorithms to solve LP
	Comparing with Integer Programming (IP)
	Example with Traveling Salesman Problem (TSP)

	K-center problem
	Problem description
	Gonzalez Algorithm
	Streaming
	Algorithm
	Recluster (C, rp)
	Final answer:

	Analysis

