
Lecture Note 5

1 Linear Programming

1.1 General form

We are intereested in solving the following optimization problems: we want to optimize a linear
objective function(

∑
j cj · xj , where cj are constants, xj are variables) subject to linear inequal-

ity/equality constraints. Here is the general form of linear programming.

min
∑
j

cj · xj

s.t ∀i,
∑
j

aij · xj ≥ bi

∀i, xi ≥ 0

1.2 Algorithms to solve LP

• Simplex: by Dantzig. This algorithm is fast in practice, but in worst case takes exponential
time

• Ellipsoid Algorithm: by Khachiyan in 70’s. In polynomial time.

• Interial Point Algorithm: by Karmarkar in early 80’s. Also polynomial time.

1.3 Comparing with Integer Programming (IP)

• LP can be solved in polynomial time

• IP is NP-complete

1.4 Example with Traveling Salesman Problem (TSP)

• Target function:
min

∑
(i,j)∈E

X(i,j) · d(i, j)

We want X(i,j) to be 1 if and only if (i, j) ∈ TOUR, and 0 otherwise. We need a set of
constraints to make it work

• First try:
∀v,

∑
i

X(v,i) ≥ 2, and
∑
i

X(v,i) ≤ 2

May not work, as it might give many disconnected cycles instead of a single tour

• Fix: For every subset, the number of out-degree is at least 2.

1

2 K-center problem

2.1 Problem description

n points, and want to select a set S ⊆ points where |S| = k. Define cost(p, S) = minq∈S d(p, q), and
we want to minimize

min
S

max
p

cost(p, S)

2.2 Gonzalez Algorithm

• S1 ← any point

• For i = 2 to k do

– Si ← point with highest cost relative to {S1, . . . , Si−1}

2.3 Streaming

link
The stream would be x1, x2, x3, The subset we are maintaining is C = {c1, c2, c3, . . . , ck′},

where k′ ≤ k. rp is a lower bound on the optimal solution.

2.4 Algorithm

• C = First k distinct points

• r0 = 0, p = 1

• For stage p (xi arrives)

– If d(xi, C) ≤ 4rp−1, then forget xi
– Else

∗ Add xi to C

∗ If |C| > k

· Let rp = mincj ,cl∈C
d(cj ,cl)

2

· Recluster (C, rp)
· p = p+ 1, and we move to the next stage

2.4.1 Recluster (C, rp)

• C ′ ← C

• For all pair cj , cl ∈ C ′

– If d(cj , cl) ≤ 4 · rp
∗ Drop cj or cl from C ′.

• // Let C ′ is now a maximal subset of C such that ∀cj , cl ∈ C ′ have dist > 4 · rp.

• C ← C ′

2

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2051&rep=rep1&type=pdf

2.4.2 Final answer:

Subset C, and distance 8rp.

2.5 Analysis

We have the following properties

• Lemma 1: ∀cj , cl ∈ C, d(cj , cl) ≥ 4rp−1.

• Lemma 2: rp ≥ 2rp−1

• Lemma 3: maxx d(x,C) ≤ 8rp

Lemma 1 guarantees that nodes in C are not too far from each other, Lemma 2 guarantees
that dropped points are not too far from C. Lemma 3 guarangees that rp increases quickly.

The correctness of first lemma is trivial, our Recluster procedure guarrantees this. Now we
prove Lemma 2 with Lemma 1. We prove it by induction on p. When p = 1, it is obvious that
r1 ≥ r0 = 0. Suppose this lemma is true when p = t, we prove it is also true when p = t+ 1.

Since it is true when p = t, we have rt ≥ 2rt−1. We moved from stage t to stage t + 1 because
we have to merge at least one pair of node in C. So rt+1 = mincj ,cl∈C

d(cj ,cl)
2 ≥ 4·rt

2 = 2rt, and we
are done.

As for Lemma 3, this property will hold as long as we are not reclustering. At stage p, we have
maxx d(x,C) ≤ 8 · rp, which means the farthest node x from C is closer than 8rp (or d(x, cj) ≤ 8rp
for some cj ∈ C). When we move to the next stage p + 1, cj might have been dropped, since its
distance to some other cl is less than 4rp+1. So the distance from x to cl is upper bounded by
8rp + 4rp+1 ≤ 4rp+1 + 4rp+1 = 8rp+1.

3

	Linear Programming
	General form
	Algorithms to solve LP
	Comparing with Integer Programming (IP)
	Example with Traveling Salesman Problem (TSP)

	K-center problem
	Problem description
	Gonzalez Algorithm
	Streaming
	Algorithm
	Recluster (C, rp)
	Final answer:

	Analysis

