Lecture Note 5

1 Linear Programming

1.1 General form

We are intereested in solving the following optimization problems: we want to optimize a linear objective function $\left(\sum_{j} c_{j} \cdot x_{j}\right.$, where c_{j} are constants, x_{j} are variables) subject to linear inequality/equality constraints. Here is the general form of linear programming.

$$
\begin{aligned}
& \min \sum_{j} c_{j} \cdot x_{j} \\
& \text { s.t } \forall i, \sum_{j} a_{i j} \cdot x_{j} \geq b_{i} \\
& \forall i, x_{i} \geq 0
\end{aligned}
$$

1.2 Algorithms to solve LP

- Simplex: by Dantzig. This algorithm is fast in practice, but in worst case takes exponential time
- Ellipsoid Algorithm: by Khachiyan in 70's. In polynomial time.
- Interial Point Algorithm: by Karmarkar in early 80's. Also polynomial time.

1.3 Comparing with Integer Programming (IP)

- LP can be solved in polynomial time
- IP is NP-complete

1.4 Example with Traveling Salesman Problem (TSP)

- Target function:

$$
\min \sum_{(i, j) \in E} X_{(i, j)} \cdot d(i, j)
$$

We want $X_{(i, j)}$ to be 1 if and only if $(i, j) \in$ TOUR, and 0 otherwise. We need a set of constraints to make it work

- First try:

$$
\forall v, \sum_{i} X_{(v, i)} \geq 2, \text { and } \sum_{i} X_{(v, i)} \leq 2
$$

May not work, as it might give many disconnected cycles instead of a single tour

- Fix: For every subset, the number of out-degree is at least 2 .

2 K-center problem

2.1 Problem description

n points, and want to select a set $S \subseteq$ points where $|S|=k$. Define $\operatorname{cost}(p, S)=\min _{q \in S} d(p, q)$, and we want to minimize

$$
\min _{S} \max _{p} \operatorname{cost}(p, S)
$$

2.2 Gonzalez Algorithm

- $S_{1} \leftarrow$ any point
- For $i=2$ to k do
$-S_{i} \leftarrow$ point with highest cost relative to $\left\{S_{1}, \ldots, S_{i-1}\right\}$

2.3 Streaming

link

The stream would be $x_{1}, x_{2}, x_{3}, \ldots$. The subset we are maintaining is $C=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{k^{\prime}}\right\}$, where $k^{\prime} \leq k . r_{p}$ is a lower bound on the optimal solution.

2.4 Algorithm

- $C=$ First k distinct points
- $r_{0}=0, p=1$
- For stage p (x_{i} arrives)
- If $d\left(x_{i}, C\right) \leq 4 r_{p-1}$, then forget x_{i}
- Else

$$
\begin{aligned}
& \text { * Add } x_{i} \text { to } C \\
& \text { * If }|C|>k
\end{aligned}
$$

$$
\text { Let } r_{p}=\min _{c_{j}, c_{l} \in C} \frac{d\left(c_{j}, c_{l}\right)}{2}
$$

- Recluster (C, r_{p})
- $p=p+1$, and we move to the next stage

2.4.1 Recluster (C, r_{p})

- $C^{\prime} \leftarrow C$
- For all pair $c_{j}, c_{l} \in C^{\prime}$
- If $d\left(c_{j}, c_{l}\right) \leq 4 \cdot r_{p}$
* Drop c_{j} or c_{l} from C^{\prime}.
- // Let C^{\prime} is now a maximal subset of C such that $\forall c_{j}, c_{l} \in C^{\prime}$ have dist $>4 \cdot r_{p}$.
- $C \leftarrow C^{\prime}$

2.4.2 Final answer:

Subset C, and distance $8 r_{p}$.

2.5 Analysis

We have the following properties

- Lemma 1: $\forall c_{j}, c_{l} \in C, d\left(c_{j}, c_{l}\right) \geq 4 r_{p-1}$.
- Lemma 2: $r_{p} \geq 2 r_{p-1}$
- Lemma 3: $\max _{x} d(x, C) \leq 8 r_{p}$

Lemma 1 guarantees that nodes in C are not too far from each other, Lemma 2 guarantees that dropped points are not too far from C. Lemma 3 guarangees that r_{p} increases quickly.

The correctness of first lemma is trivial, our Recluster procedure guarrantees this. Now we prove Lemma 2 with Lemma 1. We prove it by induction on p. When $p=1$, it is obvious that $r_{1} \geq r_{0}=0$. Suppose this lemma is true when $p=t$, we prove it is also true when $p=t+1$.

Since it is true when $p=t$, we have $r_{t} \geq 2 r_{t-1}$. We moved from stage t to stage $t+1$ because we have to merge at least one pair of node in C. So $r_{t+1}=\min _{c_{j}, c_{l} \in C} \frac{d\left(c_{j}, c_{l}\right)}{2} \geq \frac{4 \cdot r_{t}}{2}=2 r_{t}$, and we are done.

As for Lemma 3, this property will hold as long as we are not reclustering. At stage p, we have $\max _{x} d(x, C) \leq 8 \cdot r_{p}$, which means the farthest node x from C is closer than $8 r_{p}$ (or $d\left(x, c_{j}\right) \leq 8 r_{p}$ for some $\left.c_{j} \in C\right)$. When we move to the next stage $p+1, c_{j}$ might have been dropped, since its distance to some other c_{l} is less than $4 r_{p+1}$. So the distance from x to c_{l} is upper bounded by $8 r_{p}+4 r_{p+1} \leq 4 r_{p+1}+4 r_{p+1}=8 r_{p+1}$.

