Lecture Note 8

March 31, 2018

1 Apr 2 Schedule

- Test: 7:00-8:10 (closed book)
- No core-sets
- Chap 1, 4, 3, Linear programming.

2 Locality Sensitive Hasing

Use min hash to compress documents into small signatures, and preserve expected similarity for pairs of document. How do we find pairs with large similarity?

- $n=10^{6}$ documents, signature of length 250 (4 bytes each), so 1000 bytes per document, 1 KB $\times 10^{6}=1 \mathrm{~GB}$
- \#pairs is too large $O\left(n^{2}\right): \frac{1}{2} \times 10^{1} 2$ pairs

2.1 High level idea of LSH

Use multiple hash function $h_{1}, h_{2}, \ldots, h_{k}$

- $d_{i} \rightarrow S_{i}<x_{i}^{1}, x_{i}^{2}, \cdots>$
- $\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{250}$
- $d_{j} \rightarrow S_{j}<x_{j}^{1}, x_{j}^{2}, \cdots>$
- If the first value hashed from d_{i} and d_{j} are the same, then Jaccard similarity can be high.

2.2 Recall Jaccard similarity

$$
J\left(d_{i}, d_{j}\right)=\frac{\left|d_{i} \cap d_{j}\right|}{\left|d_{i} \cup d_{j}\right|}
$$

2.3 Bands

Define d_{i}^{i} as entries of d_{i} from $(k-1) r$. Each hash function is applied to a subset of the entries of a column. And we call such a subset a band. Two bands of document d_{i} and d_{j} are considered a match if all entries match.

	d_{1}	d_{2}	- d_{n}
 h_{1} band 1 \uparrow \downarrow \downarrow	$d_{1}^{1}=\left(\begin{array}{c}1 \\ 17 \\ 4\end{array}\right)$	\leftarrow not match $\rightarrow \quad d_{2}^{1}=\left(\begin{array}{c}2 \\ 17 \\ 4\end{array}\right)$	
h_{2} band 2	$d_{1}^{2}=\left(\begin{array}{c}3 \\ 17 \\ 1\end{array}\right)$	\leftarrow matches $\rightarrow \quad d_{2}^{2}=\left(\begin{array}{c}3 \\ 17 \\ 1\end{array}\right)$	
$h_{3} \quad$ band 3	$d_{1}^{3}=\left(\begin{array}{l}2 \\ 5 \\ 6\end{array}\right)$	\leftarrow not match $\rightarrow \quad d_{2}^{3}=\left(\begin{array}{l}2 \\ 5 \\ 7\end{array}\right)$	
\vdots	:	\vdots	
$h_{b} \quad$ band b			

2.4 Analysis

b bands, r rows in each band. Suppose (x, y) two columns have similarity $J(x, y)=s \Rightarrow$ probability that minhash agree on any entry is s

- Suppose $J\left(d_{i}, d_{j}\right)=s, 0<s<1$
- Fix a band $k, \operatorname{Pr}\left(d_{i}^{k}=d_{j}^{k}\right)=s^{r}=(0.8)^{5}=0.32768$ is the probability of two bands match in all entries.
- Probability of mismatch of two bands: $1-s^{r}$
- Probability that all bands mismatch? $\left(1-s^{r}\right)^{b}$
- Probability that at least one match $\geq 1-\left(1-s^{r}\right)^{b}$

2.4.1 Example

- If $b=16, r=4,64 \mathrm{~min}$ hash, $\left(\frac{1}{b}\right)^{1 / r}=s=\frac{1}{2}$
- If $b=20, r=5$,

s	$1-\left(1-s^{5}\right)^{20}$
0.2	0.006
0.3	0.047
0.4	0.186
0.5	0.47
0.6	0.802
0.7	0.975
0.8	0.9996

2.5 Distance Metric?

Function $d(x, y)$ that satisfies:

1. $d(x, x)=0$
2. $d(x, y)=d(y, x)$
3. $d(x, y) \leq d(x, z)+d(z, y)$

2.5.1 Example

- Jaccard distance $J_{d}=1-J_{s}$
- Euclidean distance
- Hamming distance
- Edit distance
- LP norm: $L_{p}(\vec{x}, \vec{y})=\left(\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{p}\right)^{1 / p}$

2.6 Theory of LSH

- $d(x, y) \leq d_{1} \Rightarrow$ prob of a match is high, $\geq p_{1}$
- $d(x, y) \geq d_{2} \Rightarrow$ prob of a match is low, $\leq p_{2}$

3 PageRank

Please read chapter 5.

