Lecture Note 8

March 31, 2018

1 Apr 2 Schedule

- Test: 7:00 8:10 (closed book)
- No core-sets
- Chap 1, 4, 3, Linear programming.

2 Locality Sensitive Hasing

Use min hash to compress documents into small signatures, and preserve expected similarity for pairs of document. How do we find pairs with large similarity?

- $n = 10^6$ documents, signature of length 250 (4 bytes each), so 1000 bytes per document, 1KB $\times 10^6 = 1$ GB
- #pairs is too large $O(n^2)$: $\frac{1}{2} \times 10^{12}$ pairs

2.1 High level idea of LSH

Use multiple hash function h_1, h_2, \ldots, h_k

- $d_i \rightarrow S_i < x_i^1, x_i^2, \dots >$
- $\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_{250}$
- $d_j \rightarrow S_j < x_j^1, x_j^2, \dots >$
- If the first value hashed from d_i and d_j are the same, then Jaccard similarity can be high.

2.2 Recall Jaccard similarity

$$J(d_i, d_j) = \frac{|d_i \cap d_j|}{|d_i \cup d_j|}$$

2.3 Bands

Define d_i^i as entries of d_i from (k-1)r. Each hash function is applied to a subset of the entries of a column. And we call such a subset a band. Two bands of document d_i and d_j are considered a match if all entries match.

			d_1		d_2	•••	d_n
h_1	band 1	$\begin{array}{c} \uparrow \\ r \\ \downarrow \end{array}$	$d_1^1 = \begin{pmatrix} 1\\17\\4 \end{pmatrix}$	$\leftarrow \text{not match} \rightarrow$	$d_2^1=egin{pmatrix}2\\17\\4\end{pmatrix}$		
h_2	band 2		$d_1^2 = \begin{pmatrix} 3\\17\\1 \end{pmatrix}$	$\leftarrow \text{matches} \rightarrow$	$d_2^2=egin{pmatrix}3\\17\\1\end{pmatrix}$		
h_3	band 3		$d_1^3 = \begin{pmatrix} 2\\5\\6 \end{pmatrix}$	$\leftarrow \text{not match} \rightarrow$	$d_2^3 = \begin{pmatrix} 2\\5\\7 \end{pmatrix}$		
:	:		•		:		
h_b	band b						

2.4 Analysis

b bands, r rows in each band. Suppose (x, y) two columns have similarity $J(x, y) = s \Rightarrow$ probability that minhash agree on any entry is s

- Suppose $J(d_i, d_j) = s, 0 < s < 1$
- Fix a band k, $\Pr(d_i^k = d_j^k) = s^r = (0.8)^5 = 0.32768$ is the probability of two bands match in all entries.
- Probability of mismatch of two bands: $1 s^r$
- Probability that all bands mismatch? $(1 s^r)^b$
- Probability that at least one match $\geq 1 (1 s^r)^b$

2.4.1 Example

- If $b = 16, r = 4, 64 \text{ min hash}, \left(\frac{1}{b}\right)^{1/r} = s = \frac{1}{2}$
- If b = 20, r = 5,

s	$1 - (1 - s^5)^{20}$
0.2	0.006
0.3	0.047
0.4	0.186
0.5	0.47
0.6	0.802
0.7	0.975
0.8	0.9996

2.5 Distance Metric?

Function d(x, y) that satisfies:

- 1. d(x, x) = 0
- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$

2.5.1 Example

- Jaccard distance $J_d = 1 J_s$
- Euclidean distance
- Hamming distance
- Edit distance

• LP norm:
$$L_p(\vec{x}, \vec{y}) = \left(\sum_{i=1}^d (x_i - y_i)^p\right)^{1/p}$$

2.6 Theory of LSH

- $d(x,y) \leq d_1 \Rightarrow$ prob of a match is high, $\geq p_1$
- $d(x,y) \ge d_2 \Rightarrow$ prob of a match is low, $\le p_2$

3 PageRank

Please read chapter 5.