CMSC $216 \quad$ Bitwise Operations Worksheet

1. Convert 3455 to binary using the division approach where you keep dividing by 2 .
2. Convert 010101011 to decimal.
3. Convert 3455 to hexadecimal and then to binary.
4. Find the 2 's complete represention of -17 and -19 assumming integers with 8 bits.
5. Write a function that prints the bits of an unsigned integer.
6. Write a function that rotates the bytes (not bits) of an unsigned integer to the right by 1 byte (the rightmost byte will become the leftmost one). You may not use any loop constructs.
7. Implement the function unsigned int reverse_bytes(unsigned int \mathbf{x}) that reverses the bytes of x (you may assume ints are 4 bytes). For example, reverse_bytes $(0 \times 12345678)=0 \times 78563412$. The only allowed operators are $+-=\& \mid \sim \sim \lll>$ and the only allowed constants are 124816.
8. Implement the function int bit_or (int \mathbf{a}, int \mathbf{b}) that returns the bitwise $O R$ of the and and b parameter ($a-b$). The only allowed operators are $+\& \sim$ ~ << ! >>.
