
CMSC 330: Organization of Programming
Languages

Ruby Regular Expressions

1CMSC 330 - Spring 2020

String Processing in Ruby

Scripting languages provide many useful libraries for
manipulating strings

The Ruby String class provides many useful, such as
• Concatenate two strings
• grabbing substrings
• Searching and Replacing

2CMSC 330 - Spring 2020

String Operations in Ruby

3CMSC 330 - Spring 2020

What if we want to find more complicated patterns?
• Find Steve, Stephen, Steven, Stefan, Esteve
• Count the number of words that have even number vowels

We need Regular Expressions

Regular Expressions

A way of describing patterns or sets of strings
• Searching and matching
• Formally describing strings

Ø The symbols (lexemes or tokens) that make up a language

Common to lots of languages and tools
• awk, sed, perl, grep, Java, OCaml, C libraries, etc.

Ø Popularized (and made fast) as a language feature in Perl

Based on some really elegant theory
• Future lecture

4CMSC 330 - Spring 2020

Regular Expressions

Regular expressions consist of
• Constants

Ø empty set ∅:
Ø empty string ε
Ø literal character a in Σ,a finite alphabet

• Operations over these sets
Ø Concatenation: a • b
Ø Union: a | b
Ø Kleene star: a*

• We can build complicated patterns by recursively applying the 3
operation on those 3 constants

CMSC 330 - Spring 2020 5

Example Regular Expressions in Ruby

/Ruby/
• Matches exactly the string "Ruby”
• Concatenation: /r • u • b • y/

/Ruby | OCaml/
• Matches either "Ruby” or "OCaml”

/(ab)*/
• 0 or more occurrences of “ab”, matches “”, “ab”,

“abab”,”ababab”,…

6CMSC 330 - Spring 2020

Using Regular Expressions

Regular expressions are instances of Regexp

Basic matching using =~ method of String

line = gets # read line from standard input
if line =~ /Ruby/ then # returns nil if not found

puts "Found Ruby"
end

7CMSC 330 - Spring 2020

Repetition in Regular Expressions

*: zero or more
+: one or more
• so /e+/ is the same as /ee*/

?: zero or one occurrence
{x} means repeat the search for exactly x occurrences
{x,} means repeat the search for at least x occurrences
{x, y} means repeat the search for at least x occurrences
and at most y occurrences

8CMSC 330 - Spring 2020

Watch Out for Precedence

/(Ruby)*/ means {"", "Ruby", "RubyRuby", ...}

/Ruby*/ means {"Rub", "Ruby", "Rubyy", ...}

Best to use parentheses to disambiguate
• Note that parentheses have another use, to extract matches, as

we’ll see later

9CMSC 330 - Spring 2020

Character Classes
/[abcd]/
• {"a", "b", "c", "d"} (Can you write this another way?)

/[a-zA-Z0-9]/
• Any upper or lower case letter or digit

/[^0-9]/
• Any character except 0-9 (the ^ is like not and must come first)

/[\t\n]/
• Tab, newline or space

/[a-zA-Z_\$][a-zA-Z_\$0-9]*/
• Java identifiers ($ escaped...see next slide)

10CMSC 330 - Spring 2020

Special Characters
. any character
^ beginning of line
$ end of line
\$ just a $
\d digit, [0-9]
\s whitespace, [\t\r\n\f\s]
\w word character, [A-Za-z0-9_]
\D non-digit, [^0-9]
\S non-space, [^\t\r\n\f\s]
\W non-word, [^A-Za-z0-9_]

11

Using /^pattern$/
ensures entire
string/line must
match pattern

CMSC 330 - Spring 2020

Potential Character Class Confusions
^
• Inside character classes: not
• Outside character classes: beginning of line

[]
• Inside regular expressions: character class
• Outside regular expressions: array

Ø Note: [a-z] does not make a valid array
()
• Inside character classes: literal characters ()

Ø Note /(0..2)/ does not mean 012
• Outside character classes: used for grouping

–
• Inside character classes: range (e.g., a to z given by [a-z])
• Outside character classes: subtraction

12CMSC 330 - Spring 2020

13

Summary

Let re represents an arbitrary pattern; then:
• /re/ – matches regexp re
• /(re1|re2)/ – match either re1 or re2

• /(re)*/ – match 0 or more occurrences of re
• /(re)+/ – match 1 or more occurrences of re
• /(re)?/ – match 0 or 1 occurrences of re
• /(re){2}/ – match exactly two occurrences of re
• /[a-z]/ – same as (a|b|c|...|z)
• / [^0-9]/ – match any character that is not 0, 1, etc.
• ^, $ – match start or end of string

CMSC 330 - Spring 2020

Try out regexps at rubular.com

14CMSC 330 - Spring 2020

Regular Expression Practice

Contains 2 b's, may not be consecutive.

/^ b b $/

/^ [^b]* b [^b]* b [^b]* $/

15CMSC 330 - Spring 2020

beginning
end

Any number of not b

Regular Expression Practice

Starts with c, followed by one vowel, and any number of
letters

/^c $/
/^c [aouei] [a-z]* $/

16CMSC 330 - Spring 2020

Regular Expression Practice

All letters are in alphabetic order

/^a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*r*t*$/

17CMSC 330 - Spring 2020

Regular Expression Practice

Contains sss or ccc

/s{3}|c{3}/

18CMSC 330 - Spring 2020

Regular Expression Practice

contains 2 ab

/(ab){2}/

contains 2 b

/b{2}/

19CMSC 330 - Spring 2020

Regular Expression Practice

Starts with a, 0 or 1 letter after that

/^a[a-z]?$/

20CMSC 330 - Spring 2020

Regular Expression Practice

Contains one or more ab or ba

/(ab|ba)+/

21CMSC 330 - Spring 2020

Regular Expression Practice

steve, steven, or stephen

/^ste(ve|phen|ven)$/

22CMSC 330 - Spring 2020

Regular Expression Practice

Even length string

/^(..)*$/

23CMSC 330 - Spring 2020

Regular Expression Practice

Even number of vowels

/^([^aouei]*[aouei][^aouei]*[aouei][^aouei]*)*$/

24CMSC 330 - Spring 2020

Regular Expression Practice

starts with not-b, followed by one or more a’s

/^[^b]+a+$/

25CMSC 330 - Spring 2020

A. 1
B. 2
C. 4
D. More than 4

/^Hello, Anyone awake?$/

How many different strings could this
regex match?

Quiz 1

26CMSC 330 - Spring 2020

A. 1
B. 2
C. 4
D. More than 4

/^Hello, Anyone awake?$/

How many different strings could this
regex match?

Quiz 1

27CMSC 330 - Spring 2020

e or nothing

A. ^[crab]$
B. ^c?r?a?b?$
C. ^(c|r|a|b)$
D. ^([cr]|[ab])$

Which regex is not equivalent to the
others?

Quiz 2

28CMSC 330 - Spring 2020

A. ^[crab]$
B. ^c?r?a?b?$
C. ^(c|r|a|b)$
D. ^([cr]|[ab])$

Which regex is not equivalent to the
others?

Quiz 2

29CMSC 330 - Spring 2020

A. “cmsc\d\d\d”
B. “cmsc330”
C. “hellocmsc330”
D. “cmsc330world”

Which string does not match the regex?

Quiz 3

/[a-z]{4}\d{3}/

30CMSC 330 - Spring 2020

A. “cmsc\d\d\d”
B. “cmsc330”
C. “hellocmsc330”
D. “cmsc330world”

Which string does not match the regex?

Quiz 3

/[a-z]{4}\d{3}/

31CMSC 330 - Spring 2020

Recall that without ^ and $, a regex will match any substring

Extracting Substrings based on R.E.’s
Method 1: Back References
Two options to extract substrings based on R.E.’s:

Use back references
• Ruby remembers which strings matched the parenthesized parts

of r.e.’s
• These parts can be referred to using special variables called

back references (named $1, $2,…)

34CMSC 330 - Spring 2020

Back Reference Example

Input
Min: 1 Max: 27
Min: 10 Max: 30
Min: 11 Max: 30
Min: a Max: 24

Output
mini=1 maxi=27
mini=10 maxi=30
mini= maxi=
mini= maxi=

CMSC 330 - Spring 2020 35

gets =~ /^Min: (\d+) Max: (\d+)$/
min, max = $1, $2
puts “mini=#{min} maxi=#{max}”

sets min = $1
and max = $2

Extra space messes up match Not a digit; messes up match

Back References are Local

Warning
• Despite their names, $1 etc are local variables
• (Normally, variables starting with $ are global)

def m(s)
s =~ /(Foo)/
puts $1 # prints Foo

end
m("Foo")
puts $1 # prints nil

36CMSC 330 - Spring 2020

Back References are Reset

Warning 2
• If another search is performed, all back references are reset to nil

gets =~ /(h)e(ll)o/
puts $1
puts $2
gets =~ /h(e)llo/
puts $1
puts $2
gets =~ /hello/
puts $1

hello
h
ll
hello
e
nil
hello
nil

37CMSC 330 - Spring 2020

A. help
B. I
C. I’m
D. I’m stuck in a text editor

s = “help I’m stuck in a text editor”
s =~ /([A-Z]+)/
puts $1

What is the output of the following code?

Quiz 4

38CMSC 330 - Spring 2020

A. help
B. I
C. I’m
D. I’m stuck in a text editor

s = “help I’m stuck in a text editor”
s =~ /([A-Z]+)/
puts $1

What is the output of the following code?

Quiz 4

39CMSC 330 - Spring 2020

A. afraid
B. Why
C. 6
D. 7

“Why was 6 afraid of 7?” =~ /\d\s(\w+).*(\d)/
puts $2

What is the output of the following code?

Quiz 5

40CMSC 330 - Spring 2020

A. afraid
B. Why
C. 6
D. 7

“Why was 6 afraid of 7?” =~ /\d\s(\w+).*(\d)/
puts $2

What is the output of the following code?

Quiz 5

41CMSC 330 - Spring 2020

Method 2: String.scan

Also extracts substrings based on regular expressions
Can optionally use parentheses in regular expression to
affect how the extraction is done
Has two forms that differ in what Ruby does with the
matched substrings
• The first form returns an array
• The second form uses a code block

Ø We’ll see this later

42CMSC 330 - Spring 2020

First Form of the Scan Method
str.scan(regexp)
• If regexp doesn't contain any parenthesized subparts, returns an

array of matches
Ø An array of all the substrings of str which matched

s = "CMSC 330 Fall 2018"
s.scan(/\S+ \S+/)
returns array ["CMSC 330", "Fall 2018"]

43CMSC 330 - Spring 2020

s.scan(/\S{2}/)
=> ["CM", "SC", "33", "Fa", "ll", "20", ”18"]

First Form of the Scan Method (cont.)
• If regexp contains parenthesized subparts, returns an array of

arrays
Ø Each sub-array contains the parts of the string which matched one

occurrence of the search

Ø Each sub-array has the same number of entries as the number of
parenthesized subparts

Ø All strings that matched the first part of the search (or $1 in back-reference
terms) are located in the first position of each sub-array

s = "CMSC 330 Fall 2018"
s.scan(/(\S+) (\S+)/) # [["CMSC", "330"],

["Fall", "2018"]]

44CMSC 330 - Spring 2020

Practice with Scan and Back-references
> ls -l
drwx------ 2 sorelle sorelle 4096 Feb 18 18:05 bin
-rw------- 1 sorelle sorelle 674 Jun 1 15:27 calendar
drwx------ 3 sorelle sorelle 4096 May 11 2006 cmsc311
drwx------ 2 sorelle sorelle 4096 Jun 4 17:31 cmsc330
drwx------ 1 sorelle sorelle 4096 May 30 19:19 cmsc630
drwx------ 1 sorelle sorelle 4096 May 30 19:20 cmsc631

Extract just the file or directory name from a line using

• scan

• back-references

name = line.scan(/\S+$/) # [“bin”]

if line =~ /(\S+$)/
name = $1 #

“bin”
end

45CMSC 330 - Spring 2020

Quiz 6

A. 3
B. 4
C. 5
D. 6

s = “Hello World”
t = s.scan(/\w{2}/).length
puts t

What is the output of the following code?

46CMSC 330 - Spring 2020

Quiz 6
What is the output of the following code?

A. 3
B. 4
C. 5
D. 6

s = “Hello World”
t = s.scan(/\w{2}/).length
puts t

47CMSC 330 - Spring 2020

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]
B. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]
C. [“To”,”be,”]
D. [“to”,”be!”]

s = “To be, or not to be!”
a = s.scan(/(\S+) (\S+)/)
puts a.inspect

What is the output of the following code?

48CMSC 330 - Spring 2020

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]
B. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]
C. [“To”,”be,”]
D. [“to”,”be!”]

s = “To be, or not to be!”
a = s.scan(/(\S+) (\S+)/)
puts a.inspect

What is the output of the following code?

49CMSC 330 - Spring 2020

Second Form of the Scan Method

Can take a code block as an optional argument

str.scan(regexp) { |match| block }
• Applies the code block to each match
• Short for str.scan(regexp).each { |match| block }
• The regular expression can also contain parenthesized subparts

50CMSC 330 - Spring 2020

Example of Second Form of Scan

Sums up three columns of numbers

sum_a = sum_b = sum_c = 0
while (line = gets)

line.scan(/(\d+)\s+(\d+)\s+(\d+)/) { |a,b,c|
sum_a += a.to_i
sum_b += b.to_i
sum_c += c.to_i

}
end
printf("Total: %d %d %d\n", sum_a, sum_b, sum_c)

12 34 23
19 77 87
11 98 3
2 45 0

input file:
will be read line by line, but
column summation is desired

converts the string
to an integer

51CMSC 330 - Spring 2020

Practice: Amino Acid counting in DNA

Write a function that will take a filename and read through
that file counting the number of times each group of three
letters appears so these numbers can be accessed from a
hash.

(assume: the number of chars per line is a multiple of 3)

gcggcattcagcacccgtatactgttaagcaatccagatttttgtgtataacataccggc
catactgaagcattcattgaggctagcgctgataacagtagcgctaacaatgggggaatg
tggcaatacggtgcgattactaagagccgggaccacacaccccgtaaggatggagcgtgg
taacataataatccgttcaagcagtgggcgaaggtggagatgttccagtaagaatagtgg
gggcctactacccatggtacataattaagagatcgtcaatcttgagacggtcaatggtac
cgagactatatcactcaactccggacgtatgcgcttactggtcacctcgttactgacgga

52CMSC 330 - Spring 2020

Practice: Amino Acid counting in DNA

def countaa(filename)
file = File.new(filename, "r")
lines = file.readlines
hash = Hash.new
lines.each{ |line|

acids = line.scan(/.../)
acids.each{ |aa|

if hash[aa] == nil
hash[aa] = 1

else
hash[aa] += 1

end
}

}
end

initialize
the hash, or
you will get
an error when
trying to
index into an
array with a
string

get the
file
handle

array
of
lines
from
the
filefor
each
line in
the
filefor
each
triplet
in the
line

get an array
of triplets
in the line

53CMSC 330 - Spring 2020

