
CMSC 330:  Organization of 

Programming Languages

Parsing
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Recall: Front End Scanner and Parser
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Front End

Source Scanner Parser

AST

Token
Stream

• Scanner / lexer / tokenizer converts program source 
into tokens (keywords, variable names, operators, 
numbers, etc.) with regular expressions

• Parser converts tokens into an AST (abstract syntax 
tree) based on a context free grammar



Scanning (“tokenizing”)

Converts textual input into a stream of tokens

• These are the terminals in the parser’s CFG
• Example tokens are keywords, identifiers, numbers, 

punctuation, etc.
Tokens determined with regular expressions

• Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
• Non-negative integers match [0-9]+
• Etc.

Scanner typically ignores/eliminates whitespace
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A Scanner in OCaml
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type token =
Tok_Num of char

| Tok_Sum
| Tok_END

let tokenize (s:string) = …
(* returns token list *)

;;
let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
let rec tok pos s =

if pos >= String.length s then
[Tok_END]

else
if (Str.string_match re_num s pos) then

let token = Str.matched_string s in
(Tok_Num token.[0])::(tok (pos+1) s)

else if (Str.string_match re_add s pos) then
Tok_Sum::(tok (pos+1) s)

else
raise (IllegalExpression "tokenize")

in
tok 0 str

tokenize “1+2” =
[Tok_Num '1'; 
Tok_Sum; 
Tok_Num '2'; 
Tok_END]

Uses Str
library 
module 
for 
regexps
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Implementing Parsers

Many efficient techniques for parsing

• LL(k), SLR(k), LR(k), LALR(k)…
• Take CMSC 430 for more details

One simple technique: recursive descent parsing

• This is a top-down parsing algorithm
Other algorithms are bottom-up 
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Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume:  id is 
variable name, n is 
integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
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Bottom-up Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees 
constructed are same 
as for top-down; only 
order in which nodes 
are added to tree is 
different
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BU Example: Shift-Reduce Parsing

Replaces RHS of production with LHS 

(nonterminal)

Example grammar

• S → aA, A → Bc, B → b
Example parse

• abc ⇒ aBc ⇒ aA ⇒ S
• Derivation happens in reverse

Complicated to use; requires tool support

• Bison, yacc produce shift-reduce parsers from CFGs

8



CMSC 330 Spring 2020

Tradeoffs

Recursive descent parsers

• Easy to write
Ø The formal definition is a little clunky, but if you follow the 

code then it’s almost what you might have done if you 
weren't told about grammars formally

• Fast
Ø Can be implemented with a simple table

Shift-reduce parsers handle more grammars

• Error messages may be confusing
Most languages use hacked parsers (!)

• Strange combination of the two

9
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Recursive Descent Parsing

Goal

• Can we “parse” a string – does it match our grammar?
Ø We will talk about constructing an AST later

Approach: Perform parse

• Replace each non-terminal A by the rhs of a production 
Aà rhs

• And/or match each terminal against token in input
• Repeat until input consumed, or failure
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Recursive Descent Parsing (cont.)

At each step, we'll keep track of two facts

• What grammar element are we trying to 
match/expand?

• What is the lookahead (next token of the input 
string)?  

At each step, apply one of three possible cases

• If we’re trying to match a terminal 
Ø If the lookahead is that token, then succeed, advance the 

lookahead, and continue
• If we’re trying to match a nonterminal 

Ø Pick which production to apply based on the lookahead
• Otherwise fail with a parsing error
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Parsing Example

E → id = n | { L }

L → E ; L | ε

• Here n is an integer and id is an identifier

One input might be

• { x = 3; { y = 4; }; }
• This would get turned into a list of tokens

{ x = 3 ; { y = 4 ; } ; }
• And we want to turn it into a parse tree
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Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{ x = 3 ; { y = 4 ; } ; }

E

{ L }

E ; L

id 
(x)

= n 
(3)

E ; L

{ L }

E ; L

id 
(y)

= n 
(4)

ε

εlookahead
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Recursive Descent Parsing (cont.)

Key step: Choosing the right production

Two approaches

• Backtracking
Ø Choose some production
Ø If fails, try different production
Ø Parse fails if all choices fail

• Predictive parsing (what we will do)
Ø Analyze grammar to find FIRST sets for productions
Ø Compare with lookahead to decide which production to select
Ø Parse fails if lookahead does not match FIRST
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Selecting a Production

Motivating example

• If grammar S → xyz | abc and lookahead is x 
Ø Select S → xyz since 1st terminal in RHS matches x

• If grammar S → A | B     A → x  | y B → z
Ø If lookahead is x, select S → A, since A can derive string 

beginning with x

In general

• Choose a production that can derive a sentential form 
beginning with the lookahead

• Need to know what terminal may be first in any 
sentential form derived from a nonterminal / production
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First Sets

Definition
• First(γ), for any terminal or nonterminal γ, is the set of 

initial terminals of all strings that γ may expand to
• We’ll use this to decide which production to apply

Example: Given grammar 

S → A | B

A → x  | y

B → z

• First(A) = { x, y } since First(x) = { x }, First(y) = { y } 
• First(B) = { z } since First(z) = { z } 

So: If we are parsing S and see x or y, we 
choose S → A; if we see z we choose S → B
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Calculating First(γ) 

For a terminal a

• First(a) = { a }
For a nonterminal N

• If N → ε, then add ε to First(N) 
• If N → α1 α2 ... αn, then (note the αi are all the 

symbols on the right side of one single production):
Ø Add First(α1α2 ... αn) to First(N), where First(α1 α2 ... αn) is 

defined as
• First(α1) if ε Ï First(α1)
• Otherwise (First(α1) – ε) ∪ First(α2 ... αn)

Ø If ε Î First(αi) for all i, 1 £ i £ k, then add ε to First(N)
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First( ) Examples

E → id = n | { L }

L → E ; L | ε

First(id) = { id }

First("=") = { "=" }

First(n) = { n }

First("{")= { "{" }

First("}")= { "}" }

First(";")= { ";" }

First(E) = { id, "{"  }

First(L) = { id, "{", ε }

E → id = n | { L } | ε

L → E ; L

First(id) = { id }

First("=") = { "=" }

First(n) = { n }

First("{")= { "{" }

First("}")= { "}" }

First(";")= { ";" }

First(E) = { id, "{", ε }

First(L) = { id, "{", ";" }
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Recursive Descent Parser Implementation

For all terminals, use function match_tok a

• If lookahead is a it consumes the lookahead by 
advancing the lookahead to the next token, and returns

• Fails with a parse error if lookahead is not a

For each nonterminal N, create a function parse_N

• Called when we’re trying to parse a part of the input 
which corresponds to (or can be derived from) N

• parse_S for the start symbol S begins the parse



match_tok in OCaml
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let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
match !tok_list with
(* checks lookahead; advances on match *)
| (h::t) when a = h -> tok_list := t
| _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () = 
match !tok_list with
[] -> raise (ParseError "no tokens")

| (h::t) -> h
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Parsing Nonterminals

The body of parse_N for a nonterminal N does 

the following

• Let N → β1 | ... | βk be the productions of N
Ø Here βi is the entire right side of a production- a sequence of 

terminals and nonterminals
• Pick the production N → βi such that the lookahead is 

in First(βi)
Ø It must be that First(βi) ∩ First(βj) = ∅ for i ≠ j
Ø If there is no such production, but N → ε then return
Ø Otherwise fail with a parse error

• Suppose βi = α1 α2 ... αn.  Then call parse_α1(); ... ; 
parse_αn() to match the expected right-hand side, 
and return
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Example Parser

Given grammar S → xyz | abc

• First(xyz) = { x }, First(abc) = { a }
Parser
let parse_S () = 
if lookahead () = "x" then (* S → xyz *)
(match_tok "x"; 
match_tok "y"; 
match_tok "z")

else if lookahead () = "a" then (* S → abc *)
(match_tok "a"; 
match_tok "b"; 
match_tok "c") 

else raise (ParseError "parse_S")
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Another Example Parser 

Given grammar S → A | B     A → x | y    B → z

• First(A) = { x, y }, First(B) = { z }
Parser: let rec parse_S () =

if lookahead () = "x" || 
lookahead () = "y" then
parse_A () (* S → A *)

else if lookahead () = "z" then
parse_B () (* S → B *)

else raise (ParseError "parse_S")

and parse_A () =
if lookahead () = "x" then
match_tok "x" (* A → x *)

else if lookahead () = "y" then
match_tok "y" (* A → y *)

else raise (ParseError "parse_A")
and parse_B () = …

Syntax for 
mutually 
recursive
functions in 
OCaml –
parse_S and 
parse_A and 
parse_B can 
each call the 
other
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Example

E → id = n | { L }

L → E ; L | ε

First(E) = { id, "{"  }

let rec parse_E () =

if lookahead () = "id" then
(* E → id = n *)
(match_tok "id";
match_tok "="; 
match_tok "n")

else if lookahead () = "{" then
(* E → { L } *)
(match_tok "{";
parse_L ();    
match_tok "}")

else raise (ParseError "parse_A")

and parse_L () =

if lookahead () = "id" 
|| lookahead () = "{" then

(* L → E ; L *)
(parse_E ();
match_tok ";";
parse_L ())

else 
(* L → ε *)
()

Parser:
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Things to Notice

If you draw the execution trace of the parser

• You get the parse tree (we’ll consider ASTs later)
Examples

• Grammar 
S → xyz
S → abc

• String “xyz”
parse_S ()

match_tok “x”
match_tok “y”
match_tok “z”

S 
/|\
x y z

S 
|
A
|
x

• Grammar 
S → A | B
A → x  | y
B → z

• String “x”
parse_S ()

parse_A ()
match_tok “x”
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Things to Notice (cont.)

This is a predictive parser 

• Because the lookahead determines exactly which 
production to use 

This parsing strategy may fail on some grammars

• Production First sets overlap
• Production First sets contain ε
• Possible infinite recursion

Does not mean grammar is not usable 

• Just means this parsing method not powerful enough
• May be able to change grammar
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Conflicting First Sets

Consider parsing the grammar E → ab | ac

• First(ab) = a
• First(ac) = a

Parser fails whenever A → α1 | α2 and

• First(α1) ∩ First(α2) != ε or ∅
Solution

• Rewrite grammar using left factoring

Parser cannot choose between
RHS based on lookahead!



CMSC 330 Spring 2020 34

Left Factoring Algorithm

Given grammar 

• A → xα1 | xα2 | … | xαn | β
Rewrite grammar as

• A → xL | β
• L → α1 | α2 | … | αn

Repeat as necessary

Examples

• S → ab | ac ⇨ S → aL L → b | c
• S → abcA | abB | a ⇨ S → aL L → bcA | bB | ε 
• L → bcA | bB | ε ⇨ L → bL’ | ε    L’→ cA | B
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Alternative Approach

Change structure of parser

• First match common prefix of productions
• Then use lookahead to chose between productions

Example

• Consider parsing the grammar E → a+b | a*b | a
let parse_E () =

match_tok "a"; (* common prefix *)

if lookahead () = "+" then (* E → a+b *)
(match_tok "+";
match_tok "b")

else if lookahead () = "*" then (* E → a*b *)
(match_tok "*";
match_tok "b")

else () (* E → a *)
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Left Recursion

Consider grammar S → Sa | ε

• Try writing parser

• Body of parse_S () has an infinite loop!
Ø Infinite loop occurs in grammar with left recursion

let rec parse_S () =
if lookahead () = “a” then
(parse_S (); 
match_tok “a”) (* S → Sa *)

else ()
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Right Recursion

Consider grammar S → aS | ε Again, First(aS) = a

• Try writing parser

• Will parse_S( ) infinite loop?
Ø Invoking match_tok will advance lookahead, eventually stop

• Top down parsers handles grammar w/ right recursion

let rec parse_S () =
if lookahead () = “a” then
(match_tok “a”; 
parse_S ()) (* S → aS *)

else ()
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Algorithm To Eliminate Left Recursion

Given grammar 

• A → Aα1 | Aα2 | … | Aαn | β
Ø β must exist or no derivation will yield a string

Rewrite grammar as (repeat as needed)

• A → βL
• L → α1L | α2 L | … | αn L | ε

Replaces left recursion with right recursion

Examples

• S → Sa | ε ⇨ S → L L → aL | ε
• S → Sa | Sb | c ⇨ S → cL L → aL | bL | ε
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What’s Wrong With Parse Trees?

Parse trees contain too much information

• Example
Ø Parentheses 
Ø Extra nonterminals for precedence

• This extra stuff is needed for parsing

But when we want to reason about languages

• Extra information gets in the way (too much detail)

45



CMSC 330 Spring 2020

Abstract Syntax Trees (ASTs)

An abstract syntax tree is a more compact, 

abstract representation of a parse tree, with only 

the essential parts

parse
tree AST

46
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Abstract Syntax Trees (cont.)

Intuitively, ASTs correspond to the data structure 

you’d use to represent strings in the language

• Note that grammars describe trees 
Ø So do OCaml datatypes, as we have seen already

• E → a | b | c | E+E | E-E | E*E | (E)

47
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Producing an AST

To produce an AST, we can modify the parse() 

functions to construct the AST along the way

• match_tok a returns an AST node (leaf) for a
• parse_A returns an AST node for A

Ø AST nodes for RHS of production become children of LHS node

Example

• S → aA let rec parse_S () =
if lookahead () = “a” then

let n1 = match_tok “a” in 
let n2 = parse_A () in 
Node(n1,n2)

else raise ParseError “parse_S”

S 
/ \
a A

|
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The Compilation Process
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