CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) based on a **context free grammar**
Scanning (“tokenizing”)

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.

- Tokens determined with regular expressions
 - Identifiers match regexp `[a-zA-Z_][a-zA-Z0-9_]*`
 - Non-negative integers match `[0-9]+`
 - Etc.

- Scanner typically ignores/eliminates whitespace
A Scanner in OCaml

```ocaml
module type token =
  Tok_Num of char
| Tok_Sum
| Tok_END

let tokenize (s:string) = ... (* returns token list *)
;;
```

```ocaml
let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+
let tokenize str =
  let rec tok pos s =
    if pos >= String.length s then
      [Tok_END]
    else
      if (Str.string_match re_num s pos) then
        let token = Str.matched_string s in
        (Tok_Num token.[0])::(tok (pos+1) s)
      else if (Str.string_match re_add s pos) then
        Tok_Sum::(tok (pos+1) s)
      else
        raise (IllegalExpression "tokenize")
    in
    tok 0 str

tokenize "1+2" = [Tok_Num '1';
                  Tok_Sum;
                  Tok_Num '2';
                  Tok_END]
```

Uses Str library module for regexps
Implementing Parsers

► Many efficient techniques for parsing
 • LL(k), SLR(k), LR(k), LALR(k)…
 • Take CMSC 430 for more details

► One simple technique: recursive descent parsing
 • This is a top-down parsing algorithm

► Other algorithms are bottom-up
Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing (Intuition)

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E \; ; \; L \mid \epsilon \]

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

Example grammar
- $S \rightarrow aA$, $A \rightarrow Bc$, $B \rightarrow b$

Example parse
- $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
- Derivation happens in reverse

Complicated to use; requires tool support
- *Bison, yacc* produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- Shift-reduce parsers handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal

- Can we “parse” a string – does it match our grammar?
 - We will talk about constructing an AST later

Approach: Perform parse

- Replace each non-terminal A by the rhs of a production
 \(A \rightarrow rhs \)
- And/or match each terminal against token in input
- Repeat until input consumed, or failure
Recursive Descent Parsing (cont.)

- At each step, we'll keep track of two facts
 - What grammar element are we trying to match/expand?
 - What is the lookahead (next token of the input string)?

- At each step, apply one of three possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error
Parsing Example

E → id = n | { L }
L → E ; L | ε

• Here n is an integer and id is an identifier

One input might be

• { x = 3; { y = 4; }; }

• This would get turned into a list of tokens
 { x = 3 ; { y = 4 ; } ; }

• And we want to turn it into a parse tree
Parsing Example (cont.)

\[
E \rightarrow \text{id} = n \mid \{ \text{L} \} \\
\text{L} \rightarrow \text{E} ; \text{L} \mid \varepsilon
\]

\{ x = 3 ; \{ y = 4 ; \} ; \}

lookahead
Recursive Descent Parsing (cont.)

- Key step: Choosing the right production
- Two approaches
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing (what we will do)
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
Selecting a Production

Motivating example

- If grammar $S \rightarrow xyz \mid abc$ and lookahead is x
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
- If grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - If lookahead is x, select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

• \(\text{First}(\gamma) \), for any terminal or nonterminal \(\gamma \), is the set of initial terminals of all strings that \(\gamma \) may expand to.

• We’ll use this to decide which production to apply.

Example: Given grammar

\[
\begin{align*}
S &\rightarrow A \mid B \\
A &\rightarrow x \mid y \\
B &\rightarrow z
\end{align*}
\]

• \(\text{First}(A) = \{ x, y \} \) since \(\text{First}(x) = \{ x \} \), \(\text{First}(y) = \{ y \} \)

• \(\text{First}(B) = \{ z \} \) since \(\text{First}(z) = \{ z \} \)

So: If we are parsing \(S \) and see \(x \) or \(y \), we choose \(S \rightarrow A \); if we see \(z \) we choose \(S \rightarrow B \).
Calculating First(γ)

- For a terminal a
 - First(a) = { a }

- For a nonterminal N
 - If N → ε, then add ε to First(N)
 - If N → α₁ α₂ ... αₙ, then (note the αᵢ are all the symbols on the right side of one single production):
 - Add First(α₁ α₂ ... αₙ) to First(N), where First(α₁ α₂ ... αₙ) is defined as
 - First(α₁) if ε ∉ First(α₁)
 - Otherwise (First(α₁) – ε) ∪ First(α₂ ... αₙ)
 - If ε ∈ First(αᵢ) for all i, 1 ≤ i ≤ k, then add ε to First(N)
First() Examples

E → id = n | { L }
L → E ; L | ε

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{" }
First(L) = { id, "{" , ε }

E → id = n | { L } | ε
L → E ; L

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{" , ε }
First(L) = { id, "{" , ";" }
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

 (* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

The body of `parse_N` for a nonterminal `N` does the following

- Let `N → β_1 | ... | β_k` be the productions of `N`
 - Here `β_i` is the entire right side of a production- a sequence of terminals and nonterminals
- Pick the production `N → β_i` such that the lookahead is in `First(β_i)`
 - It must be that `First(β_i) ∩ First(β_j) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
- Suppose `β_i = α_1 α_2 ... α_n`. Then call `parse_α_1(); ... ; parse_α_n()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = \{ x \}, First(abc) = \{ a \}

- Parser

 let parse_S () =
 if lookahead () = "x" then (* $S \rightarrow xyz$ *)
 (match_tok "x";
 match_tok "y";
 match_tok "z")
 else if lookahead () = "a" then (* $S \rightarrow abc$ *)
 (match_tok "a";
 match_tok "b";
 match_tok "c")
 else raise (ParseError "parse_S")
Another Example Parser

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - $\text{First}(A) = \{ x, y \}$, $\text{First}(B) = \{ z \}$

- Parser:

```
let rec parse_S () =
  if lookahead () = "x" ||
    lookahead () = "y" then
    parse_A () (* S \rightarrow A *)
  else if lookahead () = "z" then
    parse_B () (* S \rightarrow B *)
  else raise (ParseError "parse_S")

and parse_A () =
  if lookahead () = "x" then
    match_tok "x" (* A \rightarrow x *)
  else if lookahead () = "y" then
    match_tok "y" (* A \rightarrow y *)
  else raise (ParseError "parse_A")

and parse_B () = ...
```
Example

E → id = n | { L }
L → E ; L | ε

First(E) = { id, "{" }

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E → id = n *)
 (match_tok "id";
 match_tok "=";
 match_tok "n")
 else if lookahead () = "{" then
 (* E → { L } *)
 (match_tok "{";
 parse_L ()
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L → E ; L *)
 (parse_E ()
 match_tok ";";
 parse_L ())
 else
 (* L → ε *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar

 \[
 S \rightarrow xyz \\
 S \rightarrow abc
 \]

- String “xyz”

 parse_S ()

 match_tok “x” / | \

 match_tok “y” x y z

 match_tok “z”

- Grammar

 \[
 S \rightarrow A \mid B \\
 A \rightarrow x \mid y \\
 B \rightarrow z
 \]

- String “x”

 parse_S ()

 parse_A ()

 match_tok “x” / |

 x
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

- Consider parsing the grammar $E \rightarrow ab \mid ac$
 - $\text{First}(ab) = a$
 - $\text{First}(ac) = a$
 - Parser cannot choose between RHS based on lookahead!

- Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and
 - $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon \text{ or } \emptyset$

- Solution
 - Rewrite grammar using left factoring
Left Factoring Algorithm

- **Given grammar**
 - $A \rightarrow x\alpha_1 | x\alpha_2 | \ldots | x\alpha_n | \beta$

- **Rewrite grammar as**
 - $A \rightarrow xL | \beta$
 - $L \rightarrow \alpha_1 | \alpha_2 | \ldots | \alpha_n$

- **Repeat as necessary**

- **Examples**
 - $S \rightarrow ab | ac \quad \Rightarrow S \rightarrow aL \quad L \rightarrow b | c$
 - $S \rightarrow abcA | abB | a \quad \Rightarrow S \rightarrow aL \quad L \rightarrow bcA | bB | \varepsilon$
 - $L \rightarrow bcA | bB | \varepsilon \quad \Rightarrow L \rightarrow bL' | \varepsilon \quad L' \rightarrow cA | B$
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

Example
- Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```plaintext
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* $E \rightarrow a+b$ *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* $E \rightarrow a*b$ *)
    (match_tok "*";
     match_tok "b")
  else () (* $E \rightarrow a$ *)
```
Left Recursion

Consider grammar $S \rightarrow Sa \mid \epsilon$

• Try writing parser

```ml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match_tok "a") (* S → Sa *)
  else ()
```

• Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Consider grammar $S \rightarrow aS \mid \varepsilon$

Again, $\text{First}(aS) = a$

- Try writing parser

```plaintext
let rec parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
            parse_S () (* S \rightarrow aS *)
        )
    else ()
```

- Will parse_S() infinite loop?
 - Invoking match_tok will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
 - \(A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta \)
 - \(\beta \) must exist or no derivation will yield a string
 - Rewrite grammar as (repeat as needed)
 - \(A \rightarrow \beta L \)
 - \(L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon \)
- Replaces left recursion with right recursion
- Examples
 - \(S \rightarrow Sa \mid \varepsilon \) \(\Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \varepsilon \)
 - \(S \rightarrow Sa \mid Sb \mid c \) \(\Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \varepsilon \)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.

![Parse Tree vs. AST Diagram]

Parse tree

AST
Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language

• Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already

• $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$
Producing an AST

- To produce an AST, we can modify the `parse()` functions to construct the AST along the way
 - `match_tok` a returns an AST node (leaf) for a
 - `parse_A` returns an AST node for A
 - AST nodes for RHS of production become children of LHS node

- Example
 - `S → aA`

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
```

S

/ \

a A

|
The Compilation Process

source program → Compiler → target program

Lexing → Parsing → AST

regexps, DFAs

CFGs, PDAs

(may not actually be constructed)

Intermediate Code Generation → Optimization