
CMSC 330: Organization of

Programming Languages

Parsing

CMSC 330 Spring 2020 1

Recall: Front End Scanner and Parser

CMSC 330 Spring 2020 2

Front End

Source Scanner Parser

AST

Token
Stream

• Scanner / lexer / tokenizer converts program source
into tokens (keywords, variable names, operators,
numbers, etc.) with regular expressions

• Parser converts tokens into an AST (abstract syntax
tree) based on a context free grammar

Scanning (“tokenizing”)

Converts textual input into a stream of tokens

• These are the terminals in the parser’s CFG
• Example tokens are keywords, identifiers, numbers,

punctuation, etc.
Tokens determined with regular expressions

• Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
• Non-negative integers match [0-9]+
• Etc.

Scanner typically ignores/eliminates whitespace

CMSC 330 Spring 2020 3

A Scanner in OCaml

CMSC 330 Spring 2020 4

type token =
Tok_Num of char

| Tok_Sum
| Tok_END

let tokenize (s:string) = …
(* returns token list *)

;;
let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
let rec tok pos s =

if pos >= String.length s then
[Tok_END]

else
if (Str.string_match re_num s pos) then

let token = Str.matched_string s in
(Tok_Num token.[0])::(tok (pos+1) s)

else if (Str.string_match re_add s pos) then
Tok_Sum::(tok (pos+1) s)

else
raise (IllegalExpression "tokenize")

in
tok 0 str

tokenize “1+2” =
[Tok_Num '1';
Tok_Sum;
Tok_Num '2';
Tok_END]

Uses Str
library
module
for
regexps

CMSC 330 Spring 2020

Implementing Parsers

Many efficient techniques for parsing

• LL(k), SLR(k), LR(k), LALR(k)…
• Take CMSC 430 for more details

One simple technique: recursive descent parsing

• This is a top-down parsing algorithm
Other algorithms are bottom-up

5

CMSC 330 Spring 2020

Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume: id is
variable name, n is
integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

6

{ x = 3 ; { y = 4 ; } ; }

E

L

E L

E L

ε
L

E L
ε

CMSC 330 Spring 2020

Bottom-up Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees
constructed are same
as for top-down; only
order in which nodes
are added to tree is
different

7

{ x = 3 ; { y = 4 ; } ; }

E

L

E L

E L

ε
L

E L
ε

CMSC 330 Spring 2020

BU Example: Shift-Reduce Parsing

Replaces RHS of production with LHS

(nonterminal)

Example grammar

• S → aA, A → Bc, B → b
Example parse

• abc ⇒ aBc ⇒ aA ⇒ S
• Derivation happens in reverse

Complicated to use; requires tool support

• Bison, yacc produce shift-reduce parsers from CFGs

8

CMSC 330 Spring 2020

Tradeoffs

Recursive descent parsers

• Easy to write
Ø The formal definition is a little clunky, but if you follow the

code then it’s almost what you might have done if you
weren't told about grammars formally

• Fast
Ø Can be implemented with a simple table

Shift-reduce parsers handle more grammars

• Error messages may be confusing
Most languages use hacked parsers (!)

• Strange combination of the two

9

CMSC 330 Spring 2020 10

Recursive Descent Parsing

Goal

• Can we “parse” a string – does it match our grammar?
Ø We will talk about constructing an AST later

Approach: Perform parse

• Replace each non-terminal A by the rhs of a production
Aà rhs

• And/or match each terminal against token in input
• Repeat until input consumed, or failure

CMSC 330 Spring 2020 11

Recursive Descent Parsing (cont.)

At each step, we'll keep track of two facts

• What grammar element are we trying to
match/expand?

• What is the lookahead (next token of the input
string)?

At each step, apply one of three possible cases

• If we’re trying to match a terminal
Ø If the lookahead is that token, then succeed, advance the

lookahead, and continue
• If we’re trying to match a nonterminal

Ø Pick which production to apply based on the lookahead
• Otherwise fail with a parsing error

CMSC 330 Spring 2020 12

Parsing Example

E → id = n | { L }

L → E ; L | ε

• Here n is an integer and id is an identifier

One input might be

• { x = 3; { y = 4; }; }
• This would get turned into a list of tokens

{ x = 3 ; { y = 4 ; } ; }
• And we want to turn it into a parse tree

CMSC 330 Spring 2020 13

Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{ x = 3 ; { y = 4 ; } ; }

E

{ L }

E ; L

id
(x)

= n
(3)

E ; L

{ L }

E ; L

id
(y)

= n
(4)

ε

εlookahead

CMSC 330 Spring 2020 14

Recursive Descent Parsing (cont.)

Key step: Choosing the right production

Two approaches

• Backtracking
Ø Choose some production
Ø If fails, try different production
Ø Parse fails if all choices fail

• Predictive parsing (what we will do)
Ø Analyze grammar to find FIRST sets for productions
Ø Compare with lookahead to decide which production to select
Ø Parse fails if lookahead does not match FIRST

CMSC 330 Spring 2020 15

Selecting a Production

Motivating example

• If grammar S → xyz | abc and lookahead is x
Ø Select S → xyz since 1st terminal in RHS matches x

• If grammar S → A | B A → x | y B → z
Ø If lookahead is x, select S → A, since A can derive string

beginning with x

In general

• Choose a production that can derive a sentential form
beginning with the lookahead

• Need to know what terminal may be first in any
sentential form derived from a nonterminal / production

CMSC 330 Spring 2020 16

First Sets

Definition
• First(γ), for any terminal or nonterminal γ, is the set of

initial terminals of all strings that γ may expand to
• We’ll use this to decide which production to apply

Example: Given grammar

S → A | B

A → x | y

B → z

• First(A) = { x, y } since First(x) = { x }, First(y) = { y }
• First(B) = { z } since First(z) = { z }

So: If we are parsing S and see x or y, we
choose S → A; if we see z we choose S → B

CMSC 330 Spring 2020 17

Calculating First(γ)

For a terminal a

• First(a) = { a }
For a nonterminal N

• If N → ε, then add ε to First(N)
• If N → α1 α2 ... αn, then (note the αi are all the

symbols on the right side of one single production):
Ø Add First(α1α2 ... αn) to First(N), where First(α1 α2 ... αn) is

defined as
• First(α1) if ε Ï First(α1)
• Otherwise (First(α1) – ε) ∪ First(α2 ... αn)

Ø If ε Î First(αi) for all i, 1 £ i £ k, then add ε to First(N)

CMSC 330 Spring 2020 18

First() Examples

E → id = n | { L }

L → E ; L | ε

First(id) = { id }

First("=") = { "=" }

First(n) = { n }

First("{")= { "{" }

First("}")= { "}" }

First(";")= { ";" }

First(E) = { id, "{" }

First(L) = { id, "{", ε }

E → id = n | { L } | ε

L → E ; L

First(id) = { id }

First("=") = { "=" }

First(n) = { n }

First("{")= { "{" }

First("}")= { "}" }

First(";")= { ";" }

First(E) = { id, "{", ε }

First(L) = { id, "{", ";" }

CMSC 330 Spring 2020 25

Recursive Descent Parser Implementation

For all terminals, use function match_tok a

• If lookahead is a it consumes the lookahead by
advancing the lookahead to the next token, and returns

• Fails with a parse error if lookahead is not a

For each nonterminal N, create a function parse_N

• Called when we’re trying to parse a part of the input
which corresponds to (or can be derived from) N

• parse_S for the start symbol S begins the parse

match_tok in OCaml

CMSC 330 Spring 2020 26

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
match !tok_list with
(* checks lookahead; advances on match *)
| (h::t) when a = h -> tok_list := t
| _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
match !tok_list with
[] -> raise (ParseError "no tokens")

| (h::t) -> h

CMSC 330 Spring 2020 27

Parsing Nonterminals

The body of parse_N for a nonterminal N does

the following

• Let N → β1 | ... | βk be the productions of N
Ø Here βi is the entire right side of a production- a sequence of

terminals and nonterminals
• Pick the production N → βi such that the lookahead is

in First(βi)
Ø It must be that First(βi) ∩ First(βj) = ∅ for i ≠ j
Ø If there is no such production, but N → ε then return
Ø Otherwise fail with a parse error

• Suppose βi = α1 α2 ... αn. Then call parse_α1(); ... ;
parse_αn() to match the expected right-hand side,
and return

CMSC 330 Spring 2020 28

Example Parser

Given grammar S → xyz | abc

• First(xyz) = { x }, First(abc) = { a }
Parser
let parse_S () =
if lookahead () = "x" then (* S → xyz *)
(match_tok "x";
match_tok "y";
match_tok "z")

else if lookahead () = "a" then (* S → abc *)
(match_tok "a";
match_tok "b";
match_tok "c")

else raise (ParseError "parse_S")

CMSC 330 Spring 2020 29

Another Example Parser

Given grammar S → A | B A → x | y B → z

• First(A) = { x, y }, First(B) = { z }
Parser: let rec parse_S () =

if lookahead () = "x" ||
lookahead () = "y" then
parse_A () (* S → A *)

else if lookahead () = "z" then
parse_B () (* S → B *)

else raise (ParseError "parse_S")

and parse_A () =
if lookahead () = "x" then
match_tok "x" (* A → x *)

else if lookahead () = "y" then
match_tok "y" (* A → y *)

else raise (ParseError "parse_A")
and parse_B () = …

Syntax for
mutually
recursive
functions in
OCaml –
parse_S and
parse_A and
parse_B can
each call the
other

CMSC 330 Spring 2020 30

Example

E → id = n | { L }

L → E ; L | ε

First(E) = { id, "{" }

let rec parse_E () =

if lookahead () = "id" then
(* E → id = n *)
(match_tok "id";
match_tok "=";
match_tok "n")

else if lookahead () = "{" then
(* E → { L } *)
(match_tok "{";
parse_L ();
match_tok "}")

else raise (ParseError "parse_A")

and parse_L () =

if lookahead () = "id"
|| lookahead () = "{" then

(* L → E ; L *)
(parse_E ();
match_tok ";";
parse_L ())

else
(* L → ε *)
()

Parser:

CMSC 330 Spring 2020 31

Things to Notice

If you draw the execution trace of the parser

• You get the parse tree (we’ll consider ASTs later)
Examples

• Grammar
S → xyz
S → abc

• String “xyz”
parse_S ()

match_tok “x”
match_tok “y”
match_tok “z”

S
/|\
x y z

S
|
A
|
x

• Grammar
S → A | B
A → x | y
B → z

• String “x”
parse_S ()

parse_A ()
match_tok “x”

CMSC 330 Spring 2020 32

Things to Notice (cont.)

This is a predictive parser

• Because the lookahead determines exactly which
production to use

This parsing strategy may fail on some grammars

• Production First sets overlap
• Production First sets contain ε
• Possible infinite recursion

Does not mean grammar is not usable

• Just means this parsing method not powerful enough
• May be able to change grammar

CMSC 330 Spring 2020 33

Conflicting First Sets

Consider parsing the grammar E → ab | ac

• First(ab) = a
• First(ac) = a

Parser fails whenever A → α1 | α2 and

• First(α1) ∩ First(α2) != ε or ∅
Solution

• Rewrite grammar using left factoring

Parser cannot choose between
RHS based on lookahead!

CMSC 330 Spring 2020 34

Left Factoring Algorithm

Given grammar

• A → xα1 | xα2 | … | xαn | β
Rewrite grammar as

• A → xL | β
• L → α1 | α2 | … | αn

Repeat as necessary

Examples

• S → ab | ac ⇨ S → aL L → b | c
• S → abcA | abB | a ⇨ S → aL L → bcA | bB | ε
• L → bcA | bB | ε ⇨ L → bL’ | ε L’→ cA | B

CMSC 330 Spring 2020 35

Alternative Approach

Change structure of parser

• First match common prefix of productions
• Then use lookahead to chose between productions

Example

• Consider parsing the grammar E → a+b | a*b | a
let parse_E () =

match_tok "a"; (* common prefix *)

if lookahead () = "+" then (* E → a+b *)
(match_tok "+";
match_tok "b")

else if lookahead () = "*" then (* E → a*b *)
(match_tok "*";
match_tok "b")

else () (* E → a *)

CMSC 330 Spring 2020 36

Left Recursion

Consider grammar S → Sa | ε

• Try writing parser

• Body of parse_S () has an infinite loop!
Ø Infinite loop occurs in grammar with left recursion

let rec parse_S () =
if lookahead () = “a” then
(parse_S ();
match_tok “a”) (* S → Sa *)

else ()

CMSC 330 Spring 2020 37

Right Recursion

Consider grammar S → aS | ε Again, First(aS) = a

• Try writing parser

• Will parse_S() infinite loop?
Ø Invoking match_tok will advance lookahead, eventually stop

• Top down parsers handles grammar w/ right recursion

let rec parse_S () =
if lookahead () = “a” then
(match_tok “a”;
parse_S ()) (* S → aS *)

else ()

CMSC 330 Spring 2020 38

Algorithm To Eliminate Left Recursion

Given grammar

• A → Aα1 | Aα2 | … | Aαn | β
Ø β must exist or no derivation will yield a string

Rewrite grammar as (repeat as needed)

• A → βL
• L → α1L | α2 L | … | αn L | ε

Replaces left recursion with right recursion

Examples

• S → Sa | ε ⇨ S → L L → aL | ε
• S → Sa | Sb | c ⇨ S → cL L → aL | bL | ε

CMSC 330 Spring 2020

What’s Wrong With Parse Trees?

Parse trees contain too much information

• Example
Ø Parentheses
Ø Extra nonterminals for precedence

• This extra stuff is needed for parsing

But when we want to reason about languages

• Extra information gets in the way (too much detail)

45

CMSC 330 Spring 2020

Abstract Syntax Trees (ASTs)

An abstract syntax tree is a more compact,

abstract representation of a parse tree, with only

the essential parts

parse
tree AST

46

CMSC 330 Spring 2020

Abstract Syntax Trees (cont.)

Intuitively, ASTs correspond to the data structure

you’d use to represent strings in the language

• Note that grammars describe trees
Ø So do OCaml datatypes, as we have seen already

• E → a | b | c | E+E | E-E | E*E | (E)

47

CMSC 330 Spring 2020 48

Producing an AST

To produce an AST, we can modify the parse()

functions to construct the AST along the way

• match_tok a returns an AST node (leaf) for a
• parse_A returns an AST node for A

Ø AST nodes for RHS of production become children of LHS node

Example

• S → aA let rec parse_S () =
if lookahead () = “a” then

let n1 = match_tok “a” in
let n2 = parse_A () in
Node(n1,n2)

else raise ParseError “parse_S”

S
/ \
a A

|

CMSC 330 Spring 2020

The Compilation Process

49

