CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as **predicate transformers**, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

We will show how an operational semantics may be defined for Micro-Ocaml

- And develop an interpreter for it, along the way

Approach: use rules to define a judgment

\[e \Rightarrow v \]

- Says “\(e \) evaluates to \(v \)”
- \(e \): expression in Micro-OCaml
- \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and value
 - The semantics is represented as a function
 \[
 \text{eval} : \text{exp} \rightarrow \text{value}
 \]
- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e \]

- \(e, x, n\) are meta-variables that stand for categories of syntax
 - \(x\) is any identifier (like \(z, y, \text{foo}\))
 - \(n\) is any numeral (like \(1, 0, 10, -25\))
 - \(e\) is any expression (here defined, recursively!)

Concrete syntax of actual expressions in **black**
 - Such as \(\text{let}, +, z, \text{foo, in, ...}\)

\[::=\] and | are meta-syntax used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= \textit{x} \mid \textit{n} \mid e + e \mid \text{let } \textit{x} = e \text{ in } e \]

Examples

• 1 is a numeral \(n \) which is an expression \(e \)

• \(1+z \) is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)

• \textbf{let} \(z = 1 \text{ in } 1+z \) is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - 1+\(z \) is an expression \(e \), and
 - \textbf{let} \(x = e \text{ in } e \) is an expression \(e \)
Abstract Syntax = Structure

Here, the grammar for \(e \) is describing its abstract syntax tree (AST), i.e., \(e \)'s structure

\[
e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e
\]

corresponds to (in definitional interpreter)

```plaintext
type id = string
type num = int
type exp =
  | Ident of id       (* x *)
  | Num of num       (* n *)
  | Plus of exp * exp (* e+e *)
  | Let of id * exp * exp (* let x=e in e *)
```
Aside: Real Interpreters

Front End
- Parser
- Optional Static Analyzer (e.g., Type Checker)

Abstract Syntax Tree (AST), a kind of intermediate representation (IR)

Back End
- Evaluator
 - the part we write in the definitional interpreter

Source → Interpreter → Output
Input
Values

- An expression’s final result is a value. What can values be?

 \(v ::= n \)

- Just numerals for now
 - In terms of an interpreter’s representation:

 \[
 \text{type value} = \text{int}
 \]

 - In a full language, values \(v \) will also include booleans (true, false), strings, functions, ...
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- Judgments are just statements. We use rules to prove that the statement is true.
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - $\text{let } \text{foo}=1+2 \text{ in } \text{foo}+5 \Rightarrow 8$
 - $\text{let } f=1+2 \text{ in } \text{let } z=1 \text{ in } f+z \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$
- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$
- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
We can use a more compact notation for the rules we just presented: rules of inference

- Has the following format

\[
\begin{array}{c}
H_1 \quad \ldots \quad H_n \\
\hline
C
\end{array}
\]

- Says: if the conditions \(H_1 \ldots H_n \) (“hypotheses”) are true, then the condition \(C \) (“conclusion”) is true
- If \(n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an axiom

We are using inference rules where \(C \) is our judgment about evaluation, i.e., that \(e \Rightarrow v \)
Lego Blocks and Lego Cars

- $P = 8.0 \text{ mm}$
 - $= \frac{5}{6} \times H$
 - $= 2.5 \times h$

- $h = 3.2 \text{ mm}$
 - $= \frac{1}{3} \times H$
 - $= 0.4 \times P$

- $2 \times P - 0.2 \text{ mm}$
 - $= 15.8 \text{ mm}$

- 4.8 mm

- 3.2 mm

- 1.7 mm

- $H = 9.6 \text{ mm}$
 - $= 3 \times h$
 - $= 1.2 \times P$

- $P - 0.2 \text{ mm}$
 - $= 7.8 \text{ mm}$

CMSC 330 Spring 2020
Rules of Inference: Num and Sum

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - i.e., $e_1 + e_2 \Rightarrow n_3$
Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$

- If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
- If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
- Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$

\[
\begin{array}{c|c|c}
\hline
e_1 & \Rightarrow v_1 & e_2\{v_1/x\} \Rightarrow v_2 \\
\hline
\text{let } x = e_1 \text{ in } e_2 & \Rightarrow v_2 \\
\hline
\end{array}
\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 ➢ Goal: Show that \(\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7 \)
Derivations

<table>
<thead>
<tr>
<th>Derivation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[n \Rightarrow n]</td>
<td></td>
</tr>
<tr>
<td>[e_1 \Rightarrow n_1 \quad e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2]</td>
<td>[e_1 + e_2 \Rightarrow n_3]</td>
</tr>
<tr>
<td>[e_1 \Rightarrow v_1 \quad e_2 {v_1/x} \Rightarrow v_2]</td>
<td>Goal: show that [\text{let } x = 4 \text{ in } x+3 \Rightarrow 7]</td>
</tr>
</tbody>
</table>

Goal: show that \[\text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \]

\[
\begin{align*}
4 \Rightarrow 4 \\
3 \Rightarrow 3 \\
7 \text{ is } 4 + 3
\end{align*}
\]

\[
\begin{align*}
4 \Rightarrow 4 \\
4 + 3 \Rightarrow 7
\end{align*}
\]

\[\text{let } x = 4 \text{ in } x+3 \Rightarrow 7\]
Definitional Interpreter

- The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```latex
let rec eval (e:exp):value =
match e with
  Ident x -> (* no rule *) failwith “no value”
| Num n -> n
| Plus (e1,e2) ->
  let n1 = eval e1 in
  let n2 = eval e2 in
  let n3 = n1+n2 in
  n3
| Let (x,e1,e2) ->
  let v1 = eval e1 in
  let e2’ = subst v1 x e2 in
  let v2 = eval e2’ in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

\[e1 \Rightarrow n1 \quad e2 \Rightarrow n2 \quad n3 \text{ is } n1+n2 \]

\[e1 + e2 \Rightarrow n3 \]

\[e1 \Rightarrow v1 \quad e2\{v1/x\} \Rightarrow v2 \]

\[\text{let } x = e1 \text{ in } e2 \Rightarrow v2 \]
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{is } 4 + 3
\end{align*}
\]

\[
\begin{align*}
4 & \Rightarrow 4 \\
4 + 3 & \Rightarrow 7
\end{align*}
\]

\[
\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7
\]

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
\text{eval Num } 4 & \Rightarrow 4 \\
\text{eval Num } 3 & \Rightarrow 3 \\
7 & \text{is } 4 + 3
\end{align*}
\]

\[
\begin{align*}
\text{eval (subst 4 "x")}
\end{align*}
\]

\[
\begin{align*}
\text{eval Num } 4 & \Rightarrow 4 \\
\text{Plus(Ident("x"),Num 3))} & \Rightarrow 7
\end{align*}
\]

\[
\begin{align*}
\text{eval Let("x",Num 4,Plus(Ident("x"),Num 3))} & \Rightarrow 7
\end{align*}
\]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a *proof* can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$

- Proofs can be constructed bottom-up
 - In a goal-directed fashion

- Thus, function $\text{eval } e = \{ v | e \Rightarrow v \}$
 - Determinism of semantics implies at most one element for any e

- So: Expression e *means* v
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Mathematically, an environment is a partial function from identifiers to values
- If \(A \) is an environment, and \(x \) is an identifier, then \(A(x) \) can either be …
 - … a value (intuition: the variable has been declared)
 - … or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table
- If \(A \) is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then \(A(x) \) is 0, \(A(y) \) is 2, and \(A(z) \) is undefined
Notation, Operations on Environments

- is the empty environment (undefined for all ids)
- If A is an environment then $A, x: v$ is one that extends A with a mapping from x to v
 - Sometimes just write $x: v$ instead of $\cdot, x: v$ for brevity
 - NB. if A maps x to some v', then that mapping is shadowed by the mapping $x: v$
- Lookup $A(x)$ is defined as follows
 - $(x) = \text{undefined}$
 - $(A, y: v)(x) = \begin{cases} v & \text{if } x = y \\ A(x) & \text{if } x \not= y \text{ and } A(x) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$
An environment is just a list of mappings, which are just pairs of variable to value - called an association list.
Semantics with Environments

- The environment semantics changes the judgment
 \[e \Rightarrow v \]
 to be
 \[A; e \Rightarrow v \]
 where \(A \) is an environment
 - Idea: \(A \) is used to give values to the identifiers in \(e \)
 - \(A \) can be thought of as containing declarations made up to \(e \)

- Previous rules can be modified by
 - Inserting \(A \) everywhere in the judgments
 - Adding a rule to look up variables \(x \) in \(A \)
 - Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

- A(x) = v
 \[A; \ x \Rightarrow v \]

Look up variable x in environment A

- A; n \Rightarrow n

Extend environment A with mapping from x to v1

- A; e1 \Rightarrow v1
 \[A, x: v1; e2 \Rightarrow v2 \]
 \[A; \text{let } x = e1 \text{ in } e2 \Rightarrow v2 \]

- A; e1 \Rightarrow n1
 A; e2 \Rightarrow n2
 n3 is n1+n2
 \[A; e1 + e2 \Rightarrow n3 \]
Definitional Interpreter: Evaluation

```ocaml
let rec eval env e =
  match e with
  | Ident x -> lookup env x
  | Num n -> n
  | Plus (e1,e2) ->
    let n1 = eval env e1 in
    let n2 = eval env e2 in
    let n3 = n1+n2 in
    n3
  | Let (x,e1,e2) ->
    let v1 = eval env e1 in
    let env' = extend env x v1 in
    let v2 = eval env' e2 in v2
```
Adding Conditionals to Micro-OCaml

e ::= x | v | e + e | let x = e in e
| eq0 e | if e then e else e

v ::= n | true | false

- In terms of interpreter definitions:

```ocaml
type exp =
  | Val of value
  | ...
  | Eq0 of exp
  | If of exp * exp * exp

type value =
  Int of int
  | Bool of bool
```
Rules for Eq0 and Booleans

<table>
<thead>
<tr>
<th>Boolean Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; true</td>
<td>true</td>
</tr>
<tr>
<td>A; false</td>
<td>false</td>
</tr>
<tr>
<td>A; e (\Rightarrow) 0</td>
<td>true</td>
</tr>
<tr>
<td>A; eq0 e (\Rightarrow) true</td>
<td>true</td>
</tr>
<tr>
<td>A; e (\Rightarrow) (v \neq 0)</td>
<td>false</td>
</tr>
<tr>
<td>A; eq0 e (\Rightarrow) false</td>
<td>false</td>
</tr>
</tbody>
</table>

- **Booleans evaluate to themselves**
 - A; false \(\Rightarrow\) false

- **eq0 tests for 0**
 - A; eq0 0 \(\Rightarrow\) true
 - A; eq0 3+4 \(\Rightarrow\) false
Rules for Conditionals

Notice that only one branch is evaluated

- \(A; \text{if eq0 0 then 3 else 4} \Rightarrow 3 \)
- \(A; \text{if eq0 1 then 3 else 4} \Rightarrow 4 \)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A; e1 \Rightarrow \text{true}) (A; e2 \Rightarrow \text{v})</td>
<td>(A; \text{if } e1 \text{ then } e2 \text{ else } e3 \Rightarrow \text{v})</td>
</tr>
<tr>
<td>(A; e1 \Rightarrow \text{false}) (A; e3 \Rightarrow \text{v})</td>
<td>(A; \text{if } e1 \text{ then } e2 \text{ else } e3 \Rightarrow \text{v})</td>
</tr>
</tbody>
</table>
Updating the Interpreter

let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Val v -> v
 | Plus (e1,e2) ->
 let Int n1 = eval env e1 in
 let Int n2 = eval env e2 in
 let n3 = n1+n2 in
 Int n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
 | Eq0 e1 ->
 let Int n = eval env e1 in
 if n=0 then Bool true else Bool false
 | If (e1,e2,e3) ->
 let Bool b = eval env e1 in
 if b then eval env e2
 else eval env e3

Basically both rules for `eq0` in this one snippet

Both `if` rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- **Types** \(t ::= \text{bool} | \text{int} \)
- **Judgment** \(\vdash e : t \) says \(e \) has type \(t \)
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`
 - $\vdash \text{true} : \text{bool}$
 - $\vdash \text{false} : \text{bool}$

- Equality checking has type `bool` too
 - Assuming its target expression has type `int`
 - $\vdash e : \text{int}$
 - $\vdash \text{eq0 } e : \text{bool}$

- Conditionals
 - $\vdash e1 : \text{bool}$
 - $\vdash e2 : t$
 - $\vdash e3 : t$
 - $\vdash \text{if } e1 \text{ then } e2 \text{ else } e3 : t$
Handling Binding

What about the types of variables?

- Taking inspiration from the environment-style operational semantics, what could you do?

Change judgment to be $G \vdash e : t$ which says

- e has type t under type environment G
- G is a map from variables x to types t
 - Analogous to map A, but maps vars to types, not values

What would be the rules for let, and variables?
Type Checking with Binding

- **Variable lookup**
 \[G(x) = t \]
 \[G \vdash x : t \]
 analogous to
 \[A(x) = v \]
 \[A; x \Rightarrow v \]

- **Let binding**
 \[G \vdash e_1 : t_1 \quad G,x : t_1 \vdash e_2 : t_2 \]
 \[G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2 \]
 analogous to
 \[A; e_1 \Rightarrow v_1 \quad A,x : v_1 ; e_2 \Rightarrow v_2 \]
 \[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later
Scaling Up: Lego City