CMSC 330: Organization of Programming Languages

Lambda Calculus

CMSC 330 Spring 2020

Entscheidungsproblem "decision problem"

Is there an algorithm to determine if a statement is true in all models of a theory?

Entscheidungsproblem "decision problem"

Algorithm, formalised

Alonzo Church: Lambda calculus An unsolvable problem of elementary number theory, *Bulletin the American Mathematical Society*, May 1935

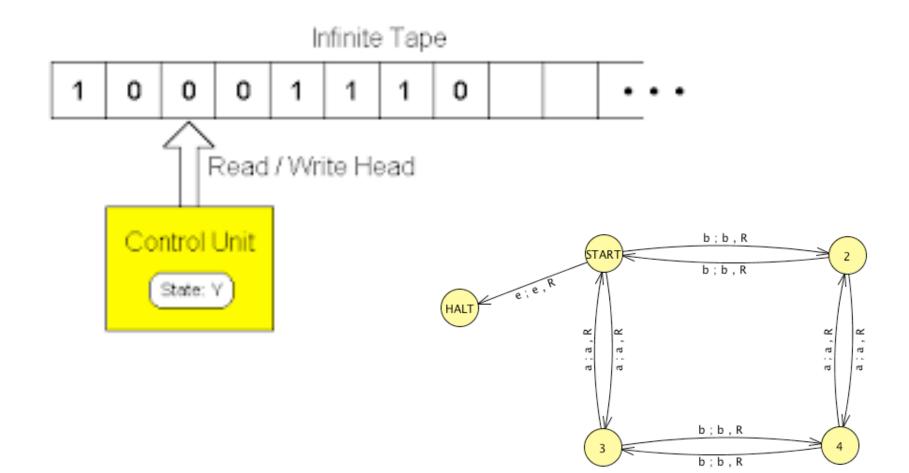
Kurt Gödel: Recursive functions

Stephen Kleene, General recursive functions of natural numbers, *Bulletin the American Mathematical Society*, July 1935

Alan M. Turing: Turing machines

On computable numbers, with an application to the *Entscheidungsproblem*, *Proceedings of the London Mathematical Society*, received 25 May 1936

Turing Machine



Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
 - What's a minimal language that is Turing Complete?

Observe: some features exist just for convenience

- Multi-argument functions
 - ns foo(a, b, c)
 - > Use currying or tuples
- Loops

while (a < b) ...

- > Use recursion
- Side effects

a := 1

> Use functional programming pass "heap" as an argument to each function, return it when with function's result

CMSC 330 Spring 2020

Mini C

You only have:

- If statement
- Plus 1
- Minus 1
- functions

```
Sum n = 1+2+3+4+5...n in Mini C
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){
   if(b == 0) return a;
   else return add( add1(a),sub1(b));
int sum(int n){
   if(n == 1) return 1;
   else return add(n, sum(sub1(n)));
}
int main(){
   printf("%d\n",sum(5));
```

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church (born in Washingon DC!)
- Formal system

- Designed to investigate functions & recursion
- For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 > Lisp, Scheme, ML, OCaml, Haskell...

Lambda Calculus Syntax

- A lambda calculus expression is defined as
 - e ::= x variable | λx.e abstraction (fun def) | e e application (fun call)
 - > This grammar describes ASTs; not for parsing (ambiguous!)
 > Lambda expressions also known as lambda terms
 - λx.e is like (fun x -> e) in OCaml

That's it! Nothing but higher-order functions

Why Study Lambda Calculus?

- It is a "core" language
 - Very small but still Turing complete
- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F#, ...)

Three Conventions

Scope of λ extends as far right as possible

- Subject to scope delimited by parentheses
- $\lambda x. \lambda y. x y$ is same as $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
 - let x = e1 in e2 is short for ($\lambda x.e2$) e1

OCaml Lambda Calc Interpreter

▶ e ::= x λx.e e e	<pre>type id = string type exp = Var of id Lam of id * exp App of exp * exp</pre>
У	Var "y"
λx.x	Lam ("x", Var "x")
λχ.λγ.χ γ	Lam ("x",(Lam("y",App (Var "x", Var "y"))))
(λx.λy.x y) /	<pre>X.X X App (Lam(``x",Lam(``y",App(Var``x",Var``y"))), Lam(``x", App (Var ``x", Var ``x")))</pre>

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

What is this term's AST?	type id = string type exp =
	Var of id
\	Lam of id * exp
$\lambda x. x x$	App of exp * exp

A. App (Lam (``x", Var ``x"), Var ``x")
B. Lam (Var ``x", Var ``x", Var ``x")
C. Lam (``x", App (Var ``x", Var ``x"))
D. App (Lam (``x", App (``x", ``x")))

What is this term's AST?	<pre>type id = string</pre>
	type exp =
	Var of id
$\lambda x \cdot x x$	Lam of id * exp
	App of exp * exp

This term is equivalent to which of the following?

λx.x a b

A.
$$(\lambda x. x)$$
 (a b)
B. $((\lambda x. x)$ a) b)
C. $\lambda x. (x (a b))$
D. $(\lambda x. ((x a) b))$

This term is equivalent to which of the following?

λx.x a b

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls (λx.e1) e2
 - Evaluate e1 with x replaced by e2
- This application is called beta-reduction
 - $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
 - > e1[x:=e2] is e1 with occurrences of x replaced by e2
 - > This operation is called *substitution*
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur *anywhere* in a term
 - > Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

 $(\lambda x.\lambda z.x z) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$

// since λ extends to right

// apply $(\lambda \mathbf{x}.e1) e2 \rightarrow e1[\mathbf{x}:=e2]$ // where $e1 = \lambda z.(\mathbf{x} z), e2 = y$

 $\rightarrow \lambda z.(y z)$

// final result

Parameters

- Formal
- Actual

Equivalent OCaml code

• (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Beta Reduction Examples

- ► $(\lambda X.X) Z \rightarrow Z$
- ► $(\lambda x.y) z \rightarrow y$
- $(\lambda x.x y) z \rightarrow z y$
 - A function that applies its argument to y

Beta Reduction Examples (cont.)

► $(\lambda x.x y) (\lambda z.z) \rightarrow (\lambda z.z) y \rightarrow y$

•
$$(\lambda x.\lambda y.x y) z \rightarrow \lambda y.z y$$

- A curried function of two arguments
- Applies its first argument to its second
- ► $(\lambda x.\lambda y.x y) (\lambda z.zz) x \rightarrow (\lambda y.(\lambda z.zz)y)x \rightarrow (\lambda z.zz)x \rightarrow xx$

Beta Reduction Examples (cont.)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow$

 $(\lambda x.(\lambda w. x w)) (y z) \rightarrow$

Beta Reduction Examples (cont.)

$(\lambda x.x (\lambda y.y)) (u r) \rightarrow (u r) (\lambda y.y)$

$(\lambda x.(\lambda w. x w)) (y z) \rightarrow (\lambda w. (y z) w)$

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x.x (\lambda x.x)) z \rightarrow ?$
 - The rightmost "x" refers to the second binding
 - This is a function that
 - > Takes its argument and applies it to the identity function
- This function is "the same" as (λx.x (λy.y))
 - Renaming bound variables consistently preserves meaning
 This is called alpha-renaming or alpha conversion
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

```
a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z
```


Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

```
a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z
```

Defining Substitution

- Use recursion on structure of terms
 - x[x:=e] = e // Replace x by e
 - y[x:=e] = y // y is different than x, so no effect
 - (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application

- In λx.e', the x is a parameter, and thus a local variable that is different from other x's. Implements static scoping.
- So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e'
- (λy.e')[x:=e] = ?
 - The parameter y does not share the same name as x, the variable being substituted for
 - > Is λy.(e' [x:=e]) correct? No...

Variable capture

- How about the following?
 - $(\lambda x.\lambda y.x y) y \rightarrow ?$
 - When we replace y inside, we don't want it to be captured by the inner binding of y, as this violates static scoping
 - I.e., $(\lambda x.\lambda y.x y) y \neq \lambda y.y y$
- Solution
 - (λx.λy.x y) is "the same" as (λx.λz.x z)
 - > Due to alpha conversion
 - So alpha-convert ($\lambda x.\lambda y.x y$) y to ($\lambda x.\lambda z.x z$) y first
 - > Now $(\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$

Completing the Definition of Substitution

- Recall: we need to define (λy.e')[x:=e]
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
 - Replace all occurrences of y in e' by w.
 - > Then replace all occurrences of x in e' by e!

Formally:

 $(\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e]) (w is fresh)$

Beta-Reduction, Again

Whenever we do a step of beta reduction

- $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)

Examples

- $(\lambda x.\lambda y.x y) y = (\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$ // $y \rightarrow z$
- $(\lambda x.x (\lambda x.x)) z = (\lambda y.y (\lambda x.x)) z \rightarrow z (\lambda x.x) // x \rightarrow y$

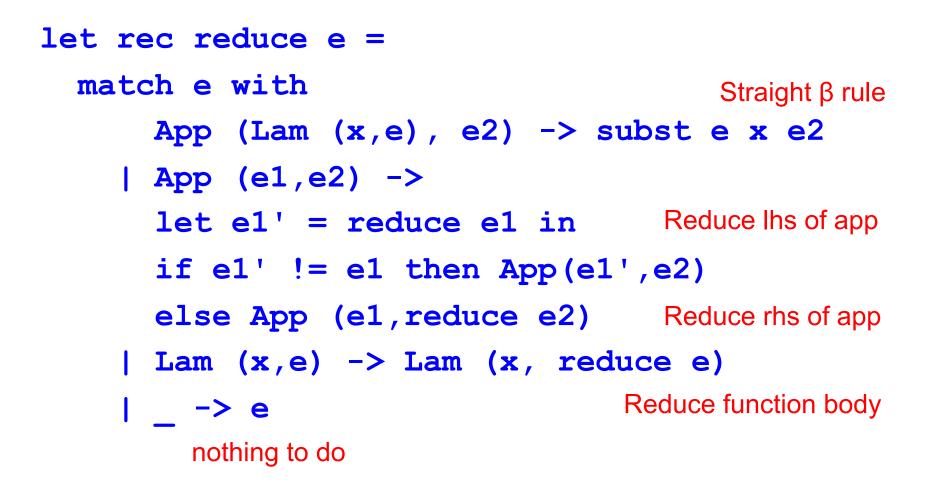
OCaml Implementation: Substitution

(* substitute e for y in m-- M[Y:=0] *) let rec subst m y e = match m with $Var x \rightarrow$ if y = x then e (* substitute *) (* don't subst *) else m | App (e1,e2) -> App (subst e1 y e, subst e2 y e) | Lam $(x,e0) \rightarrow ...$

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- M[Y:=e] *) let rec subst m y e = match m with ... | Lam $(x,e0) \rightarrow$ Shadowing blocks if y = x then m substitution else if not (List.mem x (fvs e)) then Lam (x, subst e0 y e) Safe: no capture possible **else** Might capture; need to α -convert let z = newvar() in (* fresh *) let e0' = subst e0 x (Var z) in Lam (z, subst e0' y e)

OCaml Impl: Reduction



Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Beta reducing the following term produces what result?

 $\lambda x.(\lambda y. y y) w z$

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

Beta reducing the following term produces what result?

 $\lambda x.(\lambda y. y y) w z$

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce