
CMSC 330: Organization of Programming
Languages

Safe, Low-level Programming with Rust

Copyright © 2018-19 Michael Hicks, the University
of Maryland. Some material based on
https://doc.rust-lang.org/book/second-
edition/index.html

Copyright © 2018-19 Michael Hicks, the University
of Maryland. Some material based on
https://doc.rust-lang.org/book/second-
edition/index.html

Copyright © 2018-19 Michael Hicks, the University
of Maryland. Some material based on
https://doc.rust-lang.org/book/second-
edition/index.html

Copyright © 2018-19 Michael Hicks, the University
of Maryland. Some material based on
https://doc.rust-lang.org/book/second-

CMSC 330 - Spring 2020

What choice do programmers have today?

C/C++
• Low level
• More control
• Performance over safety
• Memory managed

manually
• No periodic garbage

collection
• …

Java, OCaml, Go, Ruby…
• High level
• Secure
• Less control
• Restrict direct access to memory
• Run-time management of memory

via periodic garbage collection
• No explicit malloc and free
• Unpredictable behavior due

to GC
• …

CMSC 330 - Spring 2020

Rust: Type safety and low-level control

• Begun in 2006 by Graydon Hoare
• Sponsored as full-scale project and announced by Mozilla

in 2010
– Changed a lot since then; source of frustration
– But now: most loved programming language in Stack Overflow

annual surveys of 2016, 2017, and 2018
• Takes ideas from functional and OO languages, and

recent research
• Key properties: Type safety despite use of concurrency

and manual memory management
– And: No data races

CMSC 330 - Spring 2020

Features of Rust
• Lifetimes and Ownership

– Key feature for ensuring safety
• Traits as core of object(-like) system
• Variable default is immutability
• Data types and pattern matching
• Type inference

– No need to write types for local variables
• Generics (aka parametric polymorphism)
• First-class functions
• Efficient C bindings

CMSC 330 - Spring 2020

Rust in the real world
• Firefox Quantum and Servo components

– https://servo.org
• REmacs port of Emacs to Rust

– https://github.com/Wilfred/remacs
• Amethyst game engine

– https://www.amethyst.rs/
• Magic Pocket filesystem from Dropbox

– https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

• OpenDNS malware detection components
• https://www.rust-lang.org/en-US/friends.html
CMSC 330 - Spring 2020

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Information on Rust

• Rust book free online
– https://doc.rust-lang.org/book/
– We will follow it in these lectures

• More references via Rust site
– https://www.rust-lang.org/en-

US/documentation.html
• Rust Playground (REPL)

– https://play.rust-lang.org/

CMSC 330 - Spring 2020

https://doc.rust-lang.org/book/
https://www.rust-lang.org/en-US/documentation.html
https://play.rust-lang.org/

Installing Rust

• Instructions, and stable installers, here:

• On a Mac or Linux (VM), open a terminal and run

• On Windows, download+run rustup-init.exe

https://www.rust-lang.org/en-US/install.html

curl https://sh.rustup.rs -sSf | sh

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC 330 - Spring 2020

Rust compiler, build system

• Rust programs can be compiled using rustc
– Source files end in suffix .rs
– Compilation, by default, produces an executable

• No –c option

• Preferred: Use the cargo package manager
– Will invoke rustc as needed to build files
– Will download and build dependencies
– Based on a .toml file and .lock file

• You won’t have to mess with these for this class
– Like ocamlbuild or dune

CMSC 330 - Spring 2020

Using rustc

• Compiling and running a program

% rustc main.rs
% ./main
Hello, world!
%

fn main() {
println!("Hello, world!”)

}

main.rs:

CMSC 330 - Spring 2020

Using cargo

• Make a project, build it, run it
% cargo new hello_cargo --bin
% cd hello_cargo
% ls
Cargo.toml src/
% ls src
main.rs
% cargo build
Compiling hello_cargo v0.1.0 (file:///…)
Finished dev [unoptimized + debuginfo] …
% ./target/debug/hello_cargo
Hello, world!

fn main() {
println!("Hello, world!”)

}

More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.htmlCMSC 330 - Spring 2020

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, interactively

• Rust has no top-level a la OCaml or Ruby
• There is an in-browser execution environment

– See, for example, https://doc.rust-lang.org/stable/rust-by-example/hello.html

CMSC 330 - Spring 2020

https://doc.rust-lang.org/stable/rust-by-example/hello.html

Rust Documentation

• Your go-to to learn about Rust is the Rust documentation
page
– https://doc.rust-lang.org/stable/

• This contains links to
– the Rust Book (on which most of our slides are based),
– the reference manual, and
– short manuals on the compiler, cargo, and more

CMSC 330 - Spring 2020

https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 - Spring 2020

Functions

// comment
fn main() {

println!(“Hello, world!”);
}

Hello, world!

CMSC 330 - Spring 2020

Factorial in Rust (recursively)
fn fact(n:i32) -> i32
{
if n == 0 { 1 }
else {
let x = fact(n-1);
n * x

}
}

fn main() {
let res = fact(6);
println!(“fact(6) = {}”,res);

}

fact(6) = 720
CMSC 330 - Spring 2020

If Expressions (not Statements)

fn main() {
let n = 5;
if n < 0 {

print!("{} is negative", n);
} else if n > 0 {

print!("{} is positive", n);
} else {

print!("{} is zero", n);
}

}

5 is positive
CMSC 330 - Spring 2020

Let Statements

• By default, Rust variables are immutable
– Usage checked by the compiler

• mut is used to declare a resource as mutable.

fn main() {
let mut a: i32 = 0;
a = a + 1;
println!("{}" , a);

}

fn main() {
let a: i32 = 0;
a = a + 1;
println!("{}" , a);

}

Compile error
CMSC 330 - Spring 2020

Let Statements
fn main() {
let x = 5;

let x: i32 = 5; //type annotation

let mut x = 5; //mutable x: i32
x = 10;

}

CMSC 330 - Spring 2020

Using Mutation

• Mutation is useful when performing iteration
– As in C and Java

infinite loop
(break out)

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;
loop {
if x <= 1 { break; }
a = a * x;
x = x - 1;

}
a

}

CMSC 330 - Spring 2020

Data: Scalar Types
• Integers

– i8, i16, i32, i64, isize
– u8, u16, u32, u64, usize

• Characters (unicode)
– char

• Booleans
– bool = { true, false }

• Floating point numbers
– f32, f64

• Note: arithmetic operators (+, -, etc.) overloaded

Defaults (from inference)

Machine word size

CMSC 330 - Spring 2020

Fun Fact

• The original Rust compiler was written in OCaml
– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust
– How is this possible? Through a process called bootstrapping:

• The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

• Now we can use the binary from the Rust compiler to compile itself
• We discard the OCaml compiler and just keep updating the binary through

self-compilation
• So don’t lose that binary! J

CMSC 330 - Spring 2020

CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
in Rust

CMSC 330 - Spring 2020

Memory: the Stack and the Heap
• The stack

– constant-time, automatic (de)allocation
– Data size and lifetime must be known at compile-time

• Function parameters and locals of known (constant) size

• The heap
– Dynamically sized data, with non-fixed lifetime

• Slightly slower to access than stack; i.e., via a pointer
– GC: automatic deallocation, adds space/time overhead
– Manual deallocation (C/C++): low overhead, but non-trivial

opportunity for devastating bugs
• Dangling pointers, double free – instances of memory corruption

CMSC 330 - Spring 2020

Memory: the Stack and the Heap

// C
char *p = malloc(10)
…
free(p);

stack

heap

p

// Java
String p = new String(”rust");
…
p = null;//GC will collect later

p is deleted from stack when the function terminatesCMSC 330 - Spring 2020

Memory Management Errors

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
free(x);
x = 5; / oops! */

}

• May try to free something twice (double free)
{ int *x = ...malloc(); free(x); free(x); }
• This may corrupt the memory management data structures

– E.g., the memory allocator maintains a free list of space on the
heap that’s available

CMSC 330 - Spring 2020

GC-less Memory Management, Safely

• Rust’s heap memory managed without GC
• Type checking ensures no dangling pointers or double

frees
– unsafe idioms are disallowed
– memory leaks not prevented (not a safety problem)

• Key features of Rust that ensure safety: ownership and
lifetimes
– Data has a single owner. Immutable aliases OK, but mutation

only via owner or single mutable reference
– How long data is alive is determined by a lifetime

CMSC 330 - Spring 2020

Memory: the Stack and the Heap

// Rust
let p = String::from("hello”);
…

stack

heap

p

p is deleted from stack when the function terminates

• Deleted when the owner p
is out of scope.

• No manual free, no GC

CMSC 330 - Spring 2020

Ownership
Only one “owner” of an object
• When the “owner” of the object goes out of scope, its data is

automatically freed. No Garbage collection
• Can not access object beyond its lifetime (checked at compile-

time)

fn foo() {
let mut res = Box::new(Pair {

a: 0,
b: 0

});
res.a = 42;

}

a=42

b=0

heap

res

stack
CMSC 330 - Spring 2020

Rules of Ownership

1. Each value in Rust has a variable that’s its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be

dropped (freed)

CMSC 330 - Spring 2020

String: Dynamically sized, mutable data

• s is the owner of this data
– When s goes out of scope, its drop method is

called, which frees the data

{
let mut s = String::from("hello");

s.push_str(", world!"); //appends to s

println!("{}", s);
} //s’s data is freed by calling s.drop()

CMSC 330 - Spring 2020

Assignment Transfers Ownership

• Heap allocated data is copied by reference

– Both x and y point to the same underlying data

• A move leaves only one owner: y

let x = String::from("hello");
let y = x; //x moved to y

x’s data

y’s data

println!("{}, world!", y); //ok
println!("{}, world!", x); //fails

Avoids double
free()!

"hello"

CMSC 330 - Spring 2020

Deep Copying Retains Ownership

• Make clones (copies) to avoid ownership loss

• Primitives copied automatically
– i32, char, bool, f32, tuples of these types, etc.

• These have the Copy trait; more on traits later

let x = String::from("hello");
let y = x.clone(); //x no longer moved
println!("{}, world!", y); //ok
println!("{}, world!", x); //ok

let x = 5;
let y = x;
println!("{} = 5!", y); //ok
println!("{} = 5!", x); //ok

CMSC 330 - Spring 2020

Ownership Transfer in Function Calls

• On a call, ownership passes from:
– argument to called function’s parameter
– returned value to caller’s receiver

fn main() {
let s1 = String::from(“hello”);
let s2 = id(s1); //s1 moved to arg
println!(“{}”,s2); //id’s result moved to s2
println!(“{}”,s1); //fails

}

fn id(s:String) -> String {
s // s moved to caller, on return

}

CMSC 330 - Spring 2020

References and Borrowing
• Create an alias by making a reference

– An explicit, non-owning pointer to the original value
– Called borrowing. Done with & operator

• References are immutable by default

fn main() {
let s1 = String::from(“hello”);
let len = calc_len(&s1); //lends pointer
println!(“the length of ‘{}’ is {}”,s1,len);
}
fn calc_len(s: &String) -> usize {
s.push_str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

CMSC 330 - Spring 2020

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

Quiz 1: Owner of s data at HERE ?

CMSC 330 - Spring 2020

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

Quiz 1: Owner of s data at HERE ?

CMSC 330 - Spring 2020

Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

CMSC 330 - Spring 2020

Borrowing and Mutation
• Make immutable references to mutable values

– Shares read-only access through owner and borrowed
references

• Same for immutable values
– Mutation disallowed on original value until borrowed

reference(s) dropped

{ let mut s1 = String::from(“hello”);
{ let s2 = &s1;
println!("String is {} and {}",s1,s2); //ok
s1.push_str(" world!"); //disallowed

} //drops s2
s1.push_str(" world!"); //ok
println!("String is {}",s1);}//prints updated s1

CMSC 330 - Spring 2020

Mutable references

• To permit mutation via a reference, use &mut
– Instead of just &
– But only OK for mutable variables

let mut s1 = String::from(“hello”);
{ let s2 = &s1;
s2.push_str(“ there”);//disallowed; s2 immut

} //s2 dropped
let s3 = &mut s1; //ok since s1 mutable
s3.push_str(“ there”); //ok since s3 mutable
println!(”String is {}”,s3); //ok

CMSC 330 - Spring 2020

A. “Hello!”
B. “Hello! World!”
C. Error
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

Quiz 2: What does this evaluate to?

CMSC 330 - Spring 2020

A. “Hello!”
B. “Hello! World!”
C. Error; s2 is not mut
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

Quiz 2: What does this evaluate to?

CMSC 330 - Spring 2020

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC 330 - Spring 2020

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC 330 - Spring 2020

