CMSC 330: Organization of Programming
Languages

Safe, Low-level Programming with Rust

CMSC 330 - Spring 2020

What choice do programmers have today?

C/C++

* Low level
« More control
* Performance over safety

« Memory managed
manually

« No periodic garbage
collection

CMSC 330 - Spring 2020

Java OCaml, Go, Ruby...

High level

Secure

Less control

Restrict direct access to memory
Run-time management of memory
via periodic garbage collection

No explicit malloc and free

Unpredictable behavior due
to GC

Rust: Type safety and low-level control

* Begun in 2006 by Graydon Hoare

« Sponsored as full-scale project and announced by Mozilla
in 2010

— Changed a lot since then; source of frustration

— But now: most loved programming language in Stack Overflow
annual surveys of 2016, 2017, and 2018

« Takes ideas from functional and OO languages, and
recent research

« Key properties: Type safety despite use of concurrency
and manual memory management

— And: No data races
CMSC 330 - Spring 2020

Features of Rust

 Lifetimes and Ownership
— Key feature for ensuring safety

« Traits as core of object(-like) system
« Variable default is immutability
« Data types and pattern matching

« Type inference
— No need to write types for local variables

« (Generics (aka parametric polymorphism)
« First-class functions
 Efficient C bindings

CMSC 330 - Spring 2020

Rust in the real world

* Firefox Quantum and Servo components
— https://servo.org

REmacs port of Emacs to Rust

— https://github.com/Wilfred/remacs

Amethyst game engine
— https://www.amethyst.rs/
Magic Pocket filesystem from Dropbox

— https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

OpenDNS malware detection components
 https://www.rust-lang.org/en-US/friends.html

CMSC 330 - Spring 2020

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Information on Rust

= _
THE RUST Rust book free online
PROGRAMMING — https://doc.rust-lang.org/book/

LANGUAGE — We will follow it in these lectures
T L iy ° More references Via Rust Site

— https://www.rust-lang.org/en-
US/documentation.html

* Rust Playground (REPL)
— https://play.rust-lang.org/

s

CMSC 330 - Spring 2020

https://doc.rust-lang.org/book/
https://www.rust-lang.org/en-US/documentation.html
https://play.rust-lang.org/

Installing Rust

* |nstructions, and stable installers, here:
https://www.rust-lang.org/en-US/install.html

* On a Mac or Linux (VM), open a terminal and run
curl https://sh.rustup.rs -sSf | sh

* On Windows, download+run rustup-init.exe

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC 330 - Spring 2020

Rust compiler, build system

* Rust programs can be compiled using rustc

— Source files end in suffix .rs

— Compilation, by default, produces an executable
* No —c option

* Preferred: Use the cargo package manager
— Will invoke rustc as needed to build files

— Will download and build dependencies

— Based on a .toml file and .lock file
* You won’t have to mess with these for this class

— Like ocamlbuild or dune

CMSC 330 - Spring 2020

Using rustc

« Compiling and running a program

main.rs:

fn main() {
println! ("Hello, world!”)

}

rustc main.rs

%
%

./main
Hello, world!

o

[*]

CMSC 330 - Spring 2020

Using cargo

« Make a project, build it, run it

cd hello cargo

1s

Cargo.toml src/

$ 1ls src /////////////
main.rs

o

% cargo build

o° o° oP

cargo new hello cargo --bin

fn main() {
println! ("Hello, world!”)
}

Compiling hello cargo v0.1.0 (file:///..)
Finished dev [unoptimized + debuginfo]

(o)

Hello, world!

% ./target/debug/hello cargo

cmsc 3ddlompriad 20bps://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, interactively

* Rust has no top-level a la OCaml or Ruby

* There is an in-browser execution environment
— See, for example, https://doc.rust-lang.org/stable/rust-by-example/hello.html

Hello World

This is the source code of the traditional Hello World program.

V/ This is the main function -
fn mainQ { D@ >
// The statements here will be executed when the compiled binary is called

/7 Print text to the console
println!("Hello World!");
}

Hello World!

CMSC 330 - Spring 2020

https://doc.rust-lang.org/stable/rust-by-example/hello.html

Rust Documentation

* Your go-to to learn about Rust is the Rust documentation

page
— https://doc.rust-lang.org/stable/

 This contains links to
— the Rust Book (on which most of our slides are based),
— the reference manual, and
— short manuals on the compiler, cargo, and more

CMSC 330 - Spring 2020

https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 - Spring 2020

Functions

/[comment
fn main() {

println! (“Hello, world!”);

Hello, world!

CMSC 330 - Spring 2020

Factorial in Rust (recursively)

fn fact(n:1i32) -> 132
{
ifn=04{11}
else {
let x = fact(n-1);
n * x
}
}

fn main() {

let res = fact(6);

println! (“fact(6) = {}"”,6 res);
}

fact(6) = 720

CMSC 330 - Spring 2020

If Expressions (not Statements)

fn main() {
let n = 5;
if n < 0 {
print! ("{} is negative", n);
} else if n > 0 {
print! ("{} is positive", n);
} else {
print! ("{} is zero", n);

}

S Is positive

CMSC 330 - Spring 2020

Let Statements

« By default, Rust variables are immutable

— Usage checked by the compiler

« mut IS used to declare a resource as mutable.

fn main() {
let a: 132 =
a =a + 1;
println! ("{}" ,

0;

Compile error

CMSC 330 - Spring 2020

fn main()
let mut a:
a =a + 1;
printlin! ("{}"

132

J

4

a);

Let Statements

fn main() {
let x = 5;

let x: i32 = 5; //type annotation

let mut x = 5; //mutable x: i32
x = 10;

CMSC 330 - Spring 2020

Using Mutation

* Mutation is useful when performing iteration

— As in C and Java

CMSC 330 - Spring 2020

fn fact(n: u32) -> u32 {

let mut x
let mut a

1

= X

.
14

.
14

n;
1;

{ break;

}

infinite loop
(break out)

Data: Scalar Types

* Integers
- i8,il16,i32, 164, isize | |
_ 48, ul6, u32 4, usize Machine word size
« Characters (unicode
— h .
char Defaults (from inference)
* Booleans

[
L
O
O
=
5

Q

ke
O.
S
.

— £32, £64

* Note: arithmetic operators (+, -, etc.) overloaded

CMSC 330 - Spring 2020

Fun Fact

* The original Rust compiler was written in OCam|
— Betrays the sentiments of the language’s designers!

* Now the Rust compiler is written in ... Rust

— How is this possible? Through a process called bootstrapping:

« The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

* Now we can use the binary from the Rust compiler to compile itself

« We discard the OCaml compiler and just keep updating the binary through
self-compilation

« So don'’t lose that binary! ©

CMSC 330 - Spring 2020

CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
iIn Rust

CMSC 330 - Spring 2020

Memory: the Stack and the Heap

 The stack

— constant-time, automatic (de)allocation

— Data size and lifetime must be known at compile-time
* Function parameters and locals of known (constant) size

 The heap
— Dynamically sized data, with non-fixed lifetime
- Slightly slower to access than stack; i.e., via a pointer
— GC: automatic deallocation, adds space/time overhead

— Manual deallocation (C/C++): low overhead, but non-trivial
opportunity for devastating bugs

» Dangling pointers, double free — instances of memory corruption

CMSC 330 - Spring 2020

Memory: the Stack and the Heap

Il C stack
char *p = malloc(10)

free (p) ;

/Il Java
String p = new String(”rust");

null ;//GC will collect later /

p:

heap

cvsgeds galeted from stack when the function terminates

Memory Management Errors

« May forget to free memory (memory leak)

{ int *x = (int *) malloc(sizeof(int)); }
« May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
free (x) ;

x = 5; / oops! */
}
« May try to free something twice (double free)
{ int *x = ...malloc(); free(x), free(x); }
» This may corrupt the memory management data structures

— E.g., the memory allocator maintains a free list of space on the
heap that’s available

CMSC 330 - Spring 2020

GC-less Memory Management, Safely

* Rust’'s heap memory managed without GC

* Type checking ensures no dangling pointers or double
frees
— unsafe idioms are disallowed
— memory leaks not prevented (not a safety problem)

« Key features of Rust that ensure safety: ownership and
lifetimes

— Data has a single owner. Immutable aliases OK, but mutation
only via owner or single mutable reference

— How long data is alive is determined by a lifetime

CMSC 330 - Spring 2020

Memory: the Stack and the Heap

stack
/| Rust
let p = String::from("hello”); o
 Deleted when the owner p
Is out of scope.
 No manual free, no GC
heap

cmscaso- sping2020 P IS deleted from stack when the function terminates

Ownership

Only one “owner” of an object

 When the “owner” of the object goes out of scope, its data is
automatically freed. No Garbage collection

e Can not access object beyond its lifetime (checked at compile-
time)

fn foo () {
let mut res = Box::new(Pair {
a: 0, a=42
b: 0 b=0
}) g heap
res.a = 42;

stack

CMSC 330 - Spring 2020

Rules of Ownership

1. Each value in Rust has a variable that’s its owner

2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be
dropped (freed)

CMSC 330 - Spring 2020

String: Dynamically sized, mutable data

{
let mut s = String::from("hello") ;

s.push str(", world!"); //appends to s

println! ("{}", s);
} //s’'s data is freed by calling s.drop()

e s is the owner of this data

— When s goes out of scope, its drop method is
called, which frees the data

CMSC 330 - Spring 2020

Assignm

ent Transfers Ownership

* Heap allocated data is copied by reference

let x
let y

String::from("hello")
x; //x moved to y

.
14

— Both x and y point to the same underlying data

e A move

x’S data
"hello"

y’sdata///;7

eaves only one owner:. y

Avoids double
free () !

println! ("{}, world!'", y), //ok
println! ("{}, world!", x),; //fa

ils

CMSC 330 - Spring 2020

Deep Copying Retains Ownership

« Make clones (copies) to avoid ownership loss

let x = String::from("hello");

let y = x.clone(); //x no longer moved
println! ("{}, world!", y); //ok
println! ("{}, world!", x); //ok

* Primitives copied automatically
- 132, char, bool, £32, tuples of these types, etc.

let x = 5;
let yv = x;
println! ("{}
println! ("{}

5'", y); //ok
51", x); //ok

« These have the Copy trait; more on traits later

CMSC 330 - Spring 2020

Ownership Transfer in Function Calls

fn main() {
let sl = String::from(“hello”) ;

let s2 = id(sl); //sl moved to arg
println! (“{}”,s2); //id’'s result moved to s2

println! (“{}”,sl); //fails
}

fn id(s:String) -> String {
s // s moved to caller, on return

}

* On a call, ownership passes from:
— argument to called function’s parameter

cmsSaah€ giggzgzg value to caller’s receiver

References and Borrowing

* Create an alias by making a reference

— An explicit, non-owning pointer to the original value
— Called borrowing. Done with & operator

* References are immutable by default

fn main() {

let sl = String::from(“hello”) ;

let len = calc len(é&sl); //lends pointer
println! (“the length of ‘{}’ is {}”,sl,len);
}
fn calc len(s: &String) -> usize {

s.push str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

CMSC 330 - Spring 2020

Quiz 1: Owner of s data at HERE ?

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y,
\\ HERE
}

OO wx>
S N < X

CMSC 330 - Spring 2020

Quiz 1: Owner of s data at HERE ?

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y,
\\ HERE
}

oo w >
S N < X

CMSC 330 - Spring 2020

Rules of References

1. At any given time, you can have either but not both of

— One mutable reference
— Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

CMSC 330 - Spring 2020

Borrowing and Mutation

 Make immutable references to mutable values
— Shares read-only access through owner and borrowed

references
« Same for immutable values

— Mutation disallowed on original value until borrowed
reference(s) dropped

{ let mut sl = String::from(“hello”) ;
{ let s2 = &sl;
println! ("String is {} and {}",sl,s2); //ok
sl.push str(" world!"); //disallowed
} //drops s2

sl.push str(" world!"); //ok
println! ("String is {}",sl);}//prints updated sl

CMSC 330 - Spring 2020

Mutable references

« To permit mutation via a reference, use &mut
— Instead of just &

— But only OK for mutable variables

let mut sl = String::from(“hello”);
{ let s2 = &sl;

s2.push str(“ there”);//disallowed; s2 immut
} //s2 dropped
let s3 = &mut sl; //ok since sl mutable
s3.push str(“ there”); //ok since s3 mutable
println! (”String is {}”,s3); //ok

CMSC 330 - Spring 2020

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!"“) ;
{
let s2 = &sl;
s2.push str(“World!'");
println! (“{}", s2)
}

}

A. “Hello!”

B. “Hello! World!”
C. Error

D. “Hello!'World!”

CMSC 330 - Spring 2020

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!"“) ;
{
let s2 = &sl;
s2.push str(“World!'");
println! (“{}", s2)
}

(S

A. “Hello!”

B. “Hello! World!”

C. Error; s2 is not mut
D. “Hello!'World!”

CMSC 330 - Spring 2020

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push_str("Bob") ;
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo (&mut sl))

}
A.
B.
C. Error
D. 5

CMSC 330 - Spring 2020

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push_str("Bob") ;
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo (&mut sl))

}
A.
B.
C. Error
D. 5

CMSC 330 - Spring 2020

