Problem 1. Assume you are given arrays, \(A \) and \(B \), of lengths \(m \) and \(n \), respectively. Write pseudo-code to compute the following sum, \(S \),

\[
S = \sum_{i=1}^{m} \sum_{j=1}^{n} \left(A[i] \cdot B[j] \cdot 10^{i+j} \right)
\]

Problem 2. Given the runtime of insertion sort algorithm to be \(2n^2 \) and that of Merge sort algorithm to be \(50n \log_2 n \) running on the same machine. Show the following:

1. On a single plot show the growth curves for the two algorithms as \(n \) grows from 1 to 1000.
2. On your plot, show the value for \(n \) after which a runtime crossover occurs.
3. For which values of \(n \) would you prefer each algorithm?

Problem 3. Assume that your machine takes time(work), \(i + j \) to compare two elements in locations \(i \) and \(j \). Analyze how much exact comparison time Bubble sort takes in the worst case to sort an array of size \(n \). Assume that the array is stored in locations 1 to \(n \). You may assume regular bubble sort algorithm as discussed in the class.