Problem 1. One way to find the median of a list is to sort the list and then take the middle element.

1. Assume you use Bubble sort to sort a list with 7 elements (i.e., \(n = 7 \)). Exactly how many comparisons do you use (in the worst case)?

2. Assume you use Mergesort to sort a list with 7 elements (i.e. \(n = 7 \)). Exactly how many comparisons do you use (in the worst case)?

Problem 2. You can actually find the median by running a sorting algorithm and stopping early, as soon as you know the median.

1. Assume you use Bubble Sort to find the median of 7 elements (i.e. \(n = 7 \)), but stop as soon as you know the median. Exactly how many comparisons do you use (in the worst case)?

2. Assume you use Mergesort to find the median of 7 elements (i.e. \(n = 7 \)), but stop as soon as you know the median. Exactly how many comparisons do you use (in the worst case)?

Problem 3. We are given \(n \) points in the unit circle, \(p_i = (x_i, y_i) \), such that \(0 < x_i^2 + y_i^2 \leq 1 \) for \(i = 1, 2, \ldots, n \). Suppose that the points are uniformly distributed; that is, the probability of finding a point in any region of the circle is proportional to the area of that region. Design an algorithm with an average-case running time of \(\Theta(n) \) to sort the \(n \) points by their distances \(d_i = \sqrt{x_i^2 + y_i^2} \) from the origin.