
10-725/36-725: Convex Optimization Fall 2016

Lecture 2: August 31
Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Lidan Mu, Simon Du, Binxuan Huang

2.1 Review

A convex optimization problem is of the form

minx∈D f(x)

subjectto gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., r

where f and gi, i = 1, ...,m are all convex, and hj , j = 1, ..., r are affine. A local minimizer for a convex
optimization is a global minimizer.

2.2 Convex Sets

2.2.1 Definition

Convex set is a set C ⊆ Rn such that

x, y ∈ C ⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1

In other words, line segment joining any two elements lies entirely in the set.

Figure 2.1: A convex set and a nonconvex set

Convex combination of x1, ..., xk ∈ Rn is any linear combination

θ1x1 + ...+ θkxk

with θi ≥ 0, i = 1, ..., k, and
∑k

i=1 θi = 1.

Convex hull of set C, conv(C), is all convex combinations of elements. A convex hull is allways convex,
but set C is not required to be convex.
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2.2.2 Examples of Convex Sets

Here are some examples of convex sets:

Trivial ones: empty set, point, line

Norm ball: {x : ||x|| ≤ r}, for given norm || · ||, radius r.

Hyperplane: {x : aTx = b}, for given a, b.

Halfspace: {x : aTx ≤ b}

Affine space: {x : Ax = b}, for given A, b.

Polyhedron: {x : Ax ≤ b}, where inquality ≤ is interprated componentwise—for any vectors x, y x ≤ y
means xi ≤ yi for all i. Note: the set {x : Ax ≤ b, Cx = d} is also a polyhedron, because it is equivalent to
{x : Ax ≤ b, Cx ≤ d,−Cx ≤ −d} Simplex: it is a special case of polyhedra, given by conv{x0, ..., xk}, where

Figure 2.2: A polyhedron in two dimensional space, where {ai} is A’s row.

these points are affinely independent. The canonical example is the probability simplex, conv{e1, ..., en} =
{w : w ≥ 0, 1Tw = 1}.

Two related definition:
x0, ..., xk are affinely independent means x1 − x0, ..., xk − x0 are linear independent.
x0, ...xk are linear independent means a0x0 + ...+ akxk = 0⇒ a0 = ... = ak = 0

2.3 Cones

2.3.1 definition

Cone is a set C ⊆ Rn such that
x ∈ C ⇒ tx ∈ C for all t ≥ 0

Convex cone is a cone that is also convex, i.e.,

x1, x2 ∈ C ⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0
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Figure 2.3: A convex cone in two dimensional space

Note there exist some non-convex cones. One example is two intersecting lines.

Conic combination of x1, ..., xk ∈ Rn is any linear combination

θ1x1 + ...+ θkxk

with θi ≥ 0, i = 1, ..., k.

Conic hull of {x1, ..., xk} is collection of all conic combinations {
∑

i θixi : θ ∈ Rk
+}.

2.3.2 Examples of Convex Cones

Norm cone: {(x, t=(: ||x|| ≤ t}, for a norm|| · ||. Under l2 norm || · ||2, it is called second-order cone.

Normal cone: given any set C and point x ∈ C, we can define normal cone as

NC(x) = {g : gTx ≥ gT y for all y ∈ C}

Normal cone is always a convex cone.

Proof: For g1, g2 ∈ NC(x), (t1g1 + t2g2)Tx = t1g
T
1 x + t2g

T
2 x ≥ t1g

T
1 y + t2g

T
2 y = (t1g1 + t2g2)T y for all

t1, t2 ≥ 0

Positive semidefinite cone is Sn
+ = {X ∈ Sn : X � 0}, where X � 0 means that X is positive semidefinite

(and Sn is the set of n× n matrices)

Positive semidefinite: a matrix X is positive semidefinite if all the eigenvalues of X are larger or equal to
0 ⇐⇒ aTXa ≥ 0 for all a ∈ Rn.

2.4 Key properties of convex sets

Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them.
A formal definition is: if C,D are nonempty convex sets with C ∩D = ∅ then there exists a, b such that

C ⊆ {x : aTx ≤ b}
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D ⊆ {x : aTx ≥ b}

Figure 2.4: A line separates two disjoint convex sets in two dimensional space

Supporting hyperplane theorem: if C is a nonempty convex set, and x0 ∈ boundary(C), then there
exists a such that

C ⊆ {x : aTx ≤ aTx0}

Figure 2.5: A supporting hyperplane that passing a boundary point of a convex set in two dimensional space
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2.5 Operations Preserving Convexity of Convex Sets

intersection: the intersection of convex sets is convex.

Scaling and translation: if C is convex, then

aC + b = {ax+ b : x ∈ C}

is convex for any a, b.

Affine images and preimages: if f(x) = Ax+ b and C is convex then

f(X) = {f(x) : x ∈ C}

is convex, and if D is convex then

f−1(D) = {x : f(x) ∈ D}

is convex. Note here f−1 does not mean f must be inversible.

2.5.1 Example: linear matrix inequality solution set

Given A1, ..., Ak, B ∈ Sn, a linear matrix inequality is of the form

x1A1 + x2A2 + ...+ xkAk � B

for a variable x ∈ Rk.

Let’s prove the set C of points x that satisfy the above inequality is convex.

Approach 1: directly verify that x, y ∈ C ⇒ tx+ (1− t)y ∈ C.

Then for any v,

vT (B −
k∑

i=1

(txi + (1− t)yi)Ai)v

=vT [t(B −
∑
i

xiAi)]v + vT [(1− t)(B −
∑
i

yiAi)]v

≥0

Approach 2: let f : Rk → Sn, f(x) = B −
∑k

i=1 xiAi. Note that C = f−1(Sn
+), affine preimage of convex

set.

2.6 Convex Functions

2.6.1 Definitions

Convex function is a function f : R→ Rn such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1
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Figure 2.6: Convex function

and all x, y ∈ dom(f). In other words, f lies below the line segment joining f(x), f(y) as shown in the
following figure.

Concave function is a function f : R→ Rn such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f). So that we have

f concave ⇔ −f convex.

Important modifiers:

Strictly convex means that

f(tx+ (1− t)y) < tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

for x 6= y and 0 < t < 1. In other words, f is convex and has greater curvature than a linear function.

Strongly convex with parameter m > 0 means that f − m
2 ||x||

2
2 is convex. In words, f is at least as convex

as a quadratic function.

Note that strongly convex ⇒ strictly convex ⇒ convex. For example, function f(x) = 1
x is strictly convex

but not strongly convex.

2.6.2 Examples of Convex Functions

Univariate functions

• Exponential function eax is convex for any a over R

• Power function xa is convex for a ≥ 1 or a ≤ 0 over R+ and concave for 0 ≤ a ≤ 1 over R+

• Logarithmic function log x is concave over R++

Affine function aTx+ b is both convex and concave

Quadratic function 1
2x

TQx+ bTx+ c is convex provided that Q � 0

Least squares loss ||y −Ax||22 is always convex (since ATA is always positive semidefinite)
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Norm ||x|| is convex for any norm. For example, lp norms,

||x||p =

(
n∑

i=1

)1/p

xpi for p ≥ 1, ||x||∞ = max
i=1,...,n

|xi|

and also operator (spectral) and trace (nuclear) norms,

||X||op = σ1(X), ||X||tr =

r∑
i=1

σr(X)

where σ1(X) ≥ ... ≥ σr(X) ≥ 0 are the singular values of the matrix X

Indicator function if C is convex, then its indicator function

IC(x) =

{
0 x ∈ C
∞ x /∈ C

is convex

Support function for any set C (convex or not), its support function

i∗C(x) = max
y∈C

xT y

is convex

Max function f(x) = max{x1, ..., xn} is convex

2.7 Key Properties of Convex Functions

A function is convex if and only if its restriction to any line is convex.

Epigraph characterization A function f is convex if and only if its epigraph is a convex set, where the
epigraph is defined as

epi(f) = {(x, t) ∈ dom(f)×R : f(x) ≤ t}

Intuitively, the epigraph is the set of points that lie above the graph of the function.

Convex sublevel sets If f is convex, then its sublevel sets

{x ∈ dom(f) : f(x) ≤ t}

are convex, for all t ∈ R. The converse is not true. For example, f(x) =
√
|x| is not a convex function but

each of its sublevel sets are convex sets.

First-order characterization If f is differentiable, then f is convex if and only if dom(f) is convex, and
f(y) ≥ f(x) + ∇f(x)T (yx) for all x, y ∈ dom(f). In other words, f must completely lie above each of its
tangent hyperplanes. Therefore for a differentiable f , x minimizes f if and only if ∇f(x) = 0.

Second-order characterization If f is twice differentiable, then f is convex if and only if dom(f) is
convex, and the Hessian matrix ∇2f(x) � 0 for all x ∈ dom(f).

Jensens inequality If f is convex, and X is a random variable supported on dom(f), then f(E[X]) ≥
E[f(X)].
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2.8 Operations Preserving Convexity of Convex Functions

Nonnegative linear combination f1, ..., fm convex implies a1f1+ ...+amfm convex for any a1, ..., am ≥ 0.

Pointwise maximization if fs is convex for any s ∈ S, then f(x) = maxs∈S fs(x) is convex. Note that the
set s here can be infinite.

Partial minimization if g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈C g(x, y) is convex.

2.8.1 Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm ||.||:

f(x) = max
y∈C
||x− y||

Proof: fy(x) = ||x− y|| is convex in x for any fixed y, so by pointwise maximization rule, f is convex.

Let C be convex, and consider the minimum distance to C:

f(x) = min
y∈C
||x− y||

Proof: g(x, y) = ||x − y|| is convex in x, y jointly, and C is assumed convex, so by applying partial mini-
mization rule, f is convex.


