2.1 Review

A convex optimization problem is of the form

$$
\begin{array}{cl}
\min _{x \in D} & f(x) \\
\text { subjectto } & g_{i}(x) \leq 0, i=1, \ldots, m \\
& h_{j}(x)=0, j=1, \ldots, r
\end{array}
$$

where f and $g_{i}, i=1, \ldots, m$ are all convex, and $h_{j}, j=1, \ldots, r$ are affine. A local minimizer for a convex optimization is a global minimizer.

2.2 Convex Sets

2.2.1 Definition

Convex set is a set $C \subseteq R^{n}$ such that

$$
x, y \in C \Rightarrow t x+(1-t) y \in C \text { for all } 0 \leq t \leq 1
$$

In other words, line segment joining any two elements lies entirely in the set.

Figure 2.1: A convex set and a nonconvex set

Convex combination of $x_{1}, \ldots, x_{k} \in R^{n}$ is any linear combination

$$
\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}
$$

with $\theta_{i} \geq 0, i=1, \ldots, k$, and $\sum_{i=1}^{k} \theta_{i}=1$.
Convex hull of set $C, \operatorname{conv}(C)$, is all convex combinations of elements. A convex hull is allways convex, but set C is not required to be convex.

2.2.2 Examples of Convex Sets

Here are some examples of convex sets:
Trivial ones: empty set, point, line
Norm ball: $\{x:\|x\| \leq r\}$, for given norm $\|\cdot\|$, radius r.
Hyperplane: $\left\{x: a^{T} x=b\right\}$, for given a, b.
Halfspace: $\left\{x: a^{T} x \leq b\right\}$
Affine space: $\{x: A x=b\}$, for given A, b.
Polyhedron: $\{x: A x \leq b\}$, where inquality \leq is interprated componentwise for any vectors $x, y x \leq y$ means $x_{i} \leq y_{i}$ for all i. Note: the set $\{x: A x \leq b, C x=d\}$ is also a polyhedron, because it is equivalent to $\{x: A x \leq b, C x \leq d,-C x \leq-d\}$ Simplex: it is a special case of polyhedra, given by $\operatorname{conv}\left\{x_{0}, \ldots, x_{k}\right\}$, where

Figure 2.2: A polyhedron in two dimensional space, where $\left\{a_{i}\right\}$ is A 's row.
these points are affinely independent. The canonical example is the probability simplex, $\operatorname{conv}\left\{e_{1}, \ldots, e_{n}\right\}=$ $\left\{w: w \geq 0,1^{T} w=1\right\}$.

Two related definition:
x_{0}, \ldots, x_{k} are affinely independent means $x_{1}-x_{0}, \ldots, x_{k}-x_{0}$ are linear independent.
$x_{0}, \ldots x_{k}$ are linear independent means $a_{0} x_{0}+\ldots+a_{k} x_{k}=0 \Rightarrow a_{0}=\ldots=a_{k}=0$

2.3 Cones

2.3.1 definition

Cone is a set $C \subseteq R^{n}$ such that

$$
x \in C \Rightarrow t x \in C \text { for all } t \geq 0
$$

Convex cone is a cone that is also convex, i.e.,

$$
x_{1}, x_{2} \in C \Rightarrow t_{1} x_{1}+t_{2} x_{2} \in C \text { for all } t_{1}, t_{2} \geq 0
$$

Figure 2.3: A convex cone in two dimensional space

Note there exist some non-convex cones. One example is two intersecting lines.
Conic combination of $x_{1}, \ldots, x_{k} \in R^{n}$ is any linear combination

$$
\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}
$$

with $\theta_{i} \geq 0, i=1, \ldots, k$.
Conic hull of $\left\{x_{1}, \ldots, x_{k}\right\}$ is collection of all conic combinations $\left\{\sum_{i} \theta_{i} x_{i}: \theta \in R_{+}^{k}\right\}$.

2.3.2 Examples of Convex Cones

Norm cone: $\left\{\left(x, t_{=}(:\|x\| \leq t\}\right.\right.$, for a norm $\|\cdot\|$. Under l_{2} norm $\|\cdot\|_{2}$, it is called second-order cone.
Normal cone: given any set C and point $x \in C$, we can define normal cone as

$$
N_{C}(x)=\left\{g: g^{T} x \geq g^{T} y \text { for all } y \in C\right\}
$$

Normal cone is always a convex cone.
Proof: For $g_{1}, g_{2} \in N_{C}(x),\left(t_{1} g_{1}+t_{2} g_{2}\right)^{T} x=t_{1} g_{1}^{T} x+t_{2} g_{2}^{T} x \geq t_{1} g_{1}^{T} y+t_{2} g_{2}^{T} y=\left(t_{1} g_{1}+t_{2} g_{2}\right)^{T} y$ for all $t_{1}, t_{2} \geq 0$

Positive semidefinite cone is $S_{+}^{n}=\left\{X \in S^{n}: X \succeq 0\right\}$, where $X \succeq 0$ means that X is positive semidefinite (and S^{n} is the set of $n \times n$ matrices)

Positive semidefinite: a matrix X is positive semidefinite if all the eigenvalues of X are larger or equal to $0 \Longleftrightarrow a^{T} X a \geq 0$ for all $a \in R^{n}$.

2.4 Key properties of convex sets

Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them. A formal definition is: if C, D are nonempty convex sets with $C \cap D=\emptyset$ then there exists a, b such that

$$
C \subseteq\left\{x: a^{T} x \leq b\right\}
$$

$$
D \subseteq\left\{x: a^{T} x \geq b\right\}
$$

Figure 2.4: A line separates two disjoint convex sets in two dimensional space

Supporting hyperplane theorem: if C is a nonempty convex set, and $x_{0} \in \operatorname{boundary}(C)$, then there exists a such that

$$
C \subseteq\left\{x: a^{T} x \leq a^{T} x_{0}\right\}
$$

Figure 2.5: A supporting hyperplane that passing a boundary point of a convex set in two dimensional space

2.5 Operations Preserving Convexity of Convex Sets

intersection: the intersection of convex sets is convex.
Scaling and translation: if C is convex, then

$$
a C+b=\{a x+b: x \in C\}
$$

is convex for any a, b.
Affine images and preimages: if $f(x)=A x+b$ and C is convex then

$$
f(X)=\{f(x): x \in C\}
$$

is convex, and if D is convex then

$$
f^{-1}(D)=\{x: f(x) \in D\}
$$

is convex. Note here f^{-1} does not mean f must be inversible.

2.5.1 Example: linear matrix inequality solution set

Given $A_{1}, \ldots, A_{k}, B \in S^{n}$, a linear matrix inequality is of the form

$$
x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{k} A_{k} \succeq B
$$

for a variable $x \in R^{k}$.
Let's prove the set C of points x that satisfy the above inequality is convex.
Approach 1: directly verify that $x, y \in C \Rightarrow t x+(1-t) y \in C$.
Then for any v,

$$
\begin{aligned}
& v^{T}\left(B-\sum_{i=1}^{k}\left(t x_{i}+(1-t) y_{i}\right) A_{i}\right) v \\
= & v^{T}\left[t\left(B-\sum_{i} x_{i} A_{i}\right)\right] v+v^{T}\left[(1-t)\left(B-\sum_{i} y_{i} A_{i}\right)\right] v \\
\geq & 0
\end{aligned}
$$

Approach 2: let $f: R^{k} \rightarrow S^{n}, f(x)=B-\sum_{i=1}^{k} x_{i} A_{i}$. Note that $C=f^{-1}\left(S_{+}^{n}\right)$, affine preimage of convex set.

2.6 Convex Functions

2.6.1 Definitions

Convex function is a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ such that $\operatorname{dom}(f) \subseteq \mathbb{R}^{n}$ convex, and

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \text { for } 0 \leq t \leq 1
$$

Figure 2.6: Convex function
and all $x, y \in \operatorname{dom}(f)$. In other words, f lies below the line segment joining $f(x), f(y)$ as shown in the following figure.

Concave function is a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ such that $\operatorname{dom}(f) \subseteq \mathbb{R}^{n}$ convex, and

$$
f(t x+(1-t) y) \geq t f(x)+(1-t) f(y) \quad \text { for } 0 \leq t \leq 1
$$

and all $x, y \in \operatorname{dom}(f)$. So that we have

$$
f \text { concave } \Leftrightarrow-f \text { convex. }
$$

Important modifiers:

Strictly convex means that

$$
f(t x+(1-t) y)<t f(x)+(1-t) f(y) \text { for } 0 \leq t \leq 1
$$

for $x \neq y$ and $0<t<1$. In other words, f is convex and has greater curvature than a linear function.
Strongly convex with parameter $m>0$ means that $f-\frac{m}{2}\|x\|_{2}^{2}$ is convex. In words, f is at least as convex as a quadratic function.

Note that strongly convex \Rightarrow strictly convex \Rightarrow convex. For example, function $f(x)=\frac{1}{x}$ is strictly convex but not strongly convex.

2.6.2 Examples of Convex Functions

Univariate functions

- Exponential function $e^{a x}$ is convex for any a over \mathbb{R}
- Power function x^{a} is convex for $a \geq 1$ or $a \leq 0$ over \mathbb{R}_{+}and concave for $0 \leq a \leq 1$ over \mathbb{R}_{+}
- Logarithmic function $\log x$ is concave over \mathbb{R}_{++}

Affine function $a^{T} x+b$ is both convex and concave
Quadratic function $\frac{1}{2} x^{T} Q x+b^{T} x+c$ is convex provided that $Q \succeq 0$
Least squares loss $\|y-A x\|_{2}^{2}$ is always convex (since $A^{T} A$ is always positive semidefinite)

Norm $\|x\|$ is convex for any norm. For example, l_{p} norms,

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\right)^{1 / p} x_{i}^{p} \quad \text { for } p \geq 1, \quad\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
$$

and also operator (spectral) and trace (nuclear) norms,

$$
\|X\|_{\mathrm{op}}=\sigma_{1}(X), \quad\|X\|_{\mathrm{tr}}=\sum_{i=1}^{r} \sigma_{r}(X)
$$

where $\sigma_{1}(X) \geq \ldots \geq \sigma_{r}(X) \geq 0$ are the singular values of the matrix X
Indicator function if C is convex, then its indicator function

$$
I_{C}(x)= \begin{cases}0 & x \in C \\ \infty & x \notin C\end{cases}
$$

is convex
Support function for any set C (convex or not), its support function

$$
i_{C}^{*}(x)=\max _{y \in C} x^{T} y
$$

is convex
Max function $f(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ is convex

2.7 Key Properties of Convex Functions

A function is convex if and only if its restriction to any line is convex.
Epigraph characterization A function f is convex if and only if its epigraph is a convex set, where the epigraph is defined as

$$
\operatorname{epi}(f)=\{(x, t) \in \operatorname{dom}(f) \times R: f(x) \leq t\}
$$

Intuitively, the epigraph is the set of points that lie above the graph of the function.
Convex sublevel sets If f is convex, then its sublevel sets

$$
\{x \in \operatorname{dom}(f): f(x) \leq t\}
$$

are convex, for all $t \in \mathbb{R}$. The converse is not true. For example, $f(x)=\sqrt{|x|}$ is not a convex function but each of its sublevel sets are convex sets.

First-order characterization If f is differentiable, then f is convex if and only if dom (f) is convex, and $f(y) \geq f(x)+\nabla f(x)^{T}(y x)$ for all $x, y \in \operatorname{dom}(f)$. In other words, f must completely lie above each of its tangent hyperplanes. Therefore for a differentiable f, x minimizes f if and only if $\nabla f(x)=0$.

Second-order characterization If f is twice differentiable, then f is convex if and only if dom (f) is convex, and the Hessian matrix $\nabla^{2} f(x) \succeq 0$ for all $x \in \operatorname{dom}(f)$.

Jensens inequality If f is convex, and X is a random variable supported on $\operatorname{dom}(f)$, then $f(\mathrm{E}[X]) \geq$ $\mathrm{E}[f(X)]$.

2.8 Operations Preserving Convexity of Convex Functions

Nonnegative linear combination f_{1}, \ldots, f_{m} convex implies $a_{1} f_{1}+\ldots+a_{m} f_{m}$ convex for any $a_{1}, \ldots, a_{m} \geq 0$.
Pointwise maximization if f_{s} is convex for any $s \in S$, then $f(x)=\max _{s \in S} f_{s}(x)$ is convex. Note that the set s here can be infinite.

Partial minimization if $g(x, y)$ is convex in x, y, and C is convex, then $f(x)=\min _{y \in C} g(x, y)$ is convex.

2.8.1 Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm $\|$.$\| :$

$$
f(x)=\max _{y \in C}\|x-y\|
$$

Proof: $f_{y}(x)=\|x-y\|$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex.
Let C be convex, and consider the minimum distance to C :

$$
f(x)=\min _{y \in C}\|x-y\|
$$

Proof: $g(x, y)=\|x-y\|$ is convex in x, y jointly, and C is assumed convex, so by applying partial minimization rule, f is convex.

