Support Vector Machines

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

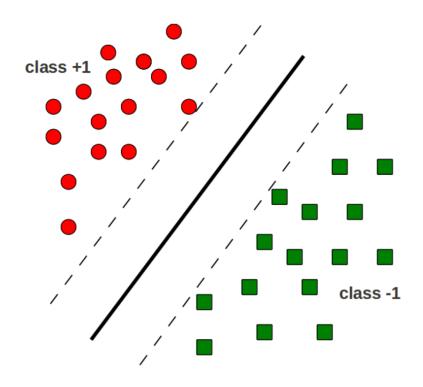
Back to linear classification

 So far: we've seen that kernels can help capture non-linear patterns in data while keeping the advantages of a linear classifier

- Support Vector Machines
 - A hyperplane-based classification algorithm
 - Highly influential
 - Backed by solid theoretical grounding (Vapnik & Cortes, 1995)
 - Easy to kernelize

The Maximum Margin Principle

 Find the hyperplane with maximum separation margin on the training data



Margin of a data set D

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y) \in \mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$
(3.8)

Distance between the hyperplane (w,b) and the nearest point in D

$$margin(\mathbf{D}) = \sup_{\boldsymbol{w}, b} margin(\mathbf{D}, \boldsymbol{w}, b)$$
(3.9)

Largest attainable margin on D

Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b

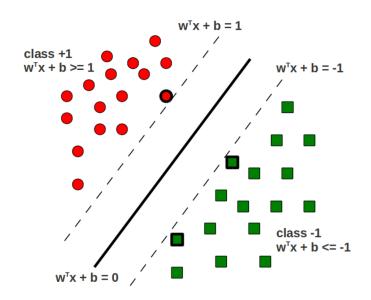
Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$

Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Goal: Learn w and b that achieve the maximum margin

Characterizing the margin

Let's assume the entire training data is correctly classified by (w,b) that achieve the maximum margin



Assume the hyperplane is such that

•
$$\mathbf{w}^T \mathbf{x}_n + b \ge 1$$
 for $y_n = +1$

•
$$\mathbf{w}^T \mathbf{x}_n + b \leq -1$$
 for $y_n = -1$

• Equivalently,
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$

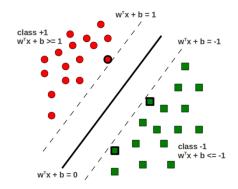
 $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T\mathbf{x}_n + b| = 1$

The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

The Optimization Problem

We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$



Maximizing the margin $\gamma = \min |\mathbf{w}|$ (the norm) Our optimization problem would be:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

Large Margin = Good Generalization

- Intuitively, large margins mean good generalization
 - Large margin => small ||w||
 - small ||w|| => regularized/simple solutions
- (Learning theory gives a more formal justification)

Solving the SVM Optimization Problem

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, ..., N$

Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Lagrangian:

Minimize
$$L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$; $n = 1, \dots, N$

Solving the SVM Optimization Problem

Take (partial) derivatives of L_P w.r.t. **w**, b and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$

Solving the SVM Optimization Problem

Take (partial) derivatives of L_P w.r.t. **w**, b and set them to zero

A Quadratic Program for

A Quadratic Program for which many off-the-shelf solvers exist
$$= \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

Substituting the

the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$
 subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$

SVM: the solution!

Once we have the α_n 's, **w** and *b* can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
$$b = -\frac{1}{2} \left(\min_{n:y_n = +1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n = -1} \mathbf{w}^T \mathbf{x}_n \right)$$

Note: Most α_n 's in the solution are zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_n 's

$$\alpha_n\{1-y_n(\mathbf{w}^T\mathbf{x}_n+b)\}=0$$

- α_n is non-zero only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$
- These examples are called support vectors
- Support vectors "support" the margin boundaries

