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Back to linear classification

e So far: we've seen that kernels can help capture
non-linear patterns in data while keeping the
advantages of a linear classifier

e Support Vector Machines
— A hyperplane-based classification algorithm
— Highly influential

— Backed by solid theoretical grounding (Vapnik & Cortes,
1995)

— Easy to kernelize



The Maximum Margin Principle

* Find the hyperplane with maximum
separation margin on the training data
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Margin of a data set D

margin(D,w,b) = { MNwyepy(w ¥+b) if wseparates D o
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest point in D
margin(D) = sup margin(D, w, b) (3.9)

w,b

Largest attainable margin on D



Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w’x + b)
Given: Training data {(x1,v1),...,(Xn, yn)}

Goal: Learn w and b that achieve the maximum margin



Characterizing the margin

Let’s assume the entire training data is correctly classified by
(w,b) that achieve the maximum margin
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o Equivalently, y,(w'x, + b) >1
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The Optimization Problem

Maximizing the margin v = minimizing ||w|| (the norm)

Our optimization problem would be:

2
Minimize f(w,b) = |“;||

subject to  y,(w’x, + b) > 1, n=1,....N




Large Margin = Good Generalization

* Intuitively, large margins mean good generalization
— Large margin =>small | |w] |

— small | |w]| | => regularized/simple solutions

e (Learning theory gives a more formal justification)



Solving the SVM Optimization

Problem
Our optimization problem is:
Minimize f(w,b) = Hv;||2
subject to 1 < y,(w'x, + b), n=1,....N
Introducing Lagrange Multipliers a, (n ={1,..., N}), one for each

constraint, leads to the Lagrangian:

[[w]®
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N
+ > an{l = ya(w'x, + b)}
n=1

subjectto o, >0; n=1,....N

Minimize L(w,b,«a) =




Solving the SVM Optimization
Problem

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero
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Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian
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subject to Z(t‘nyﬂ =0, a,>0; n=1.....N
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Solving the SVM Optimization
Problem

wes of Lp w.r.t. w, b and set them to zero

A Quadratic Program for

which many off-the-shelf Z A nYnXn,
solvers exist |

dLlp

Substituting thet the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, a) = Zo:n — — Z OO nYmYn(X xn)

mnl

subject to Zany,,:Oj ap, >0, n=1....N
n=1




SVM: the solution!

Once we have the «a,'s, w and b can be computed as:
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W = Zn=1 QpnYnXp

N R T T
b=—3 (mmn:yn:H W' X, + MaXp.y, ——1 W x,,)

Note: Most «,'s in the solution are zero (sparse solution)

@ Reason: Karush-Kuhn-Tucker (KKT) conditions Wx+b1
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@ «, is non-zero only if x, lies on one of the two Ll
margin boundaries, i.e., for which y,(w'x, +b) =1 ’ /B e

@ These examples are called support vectors

@ Support vectors “support” the margin boundaries



