SVMs II

CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT
Today’s topics

• SVMs

• Final project presentations start on Thursday

• Course evals

https://www.CourseEvalUM.umd.edu
Support Vector Machine (SVM)

A hyperplane based linear classifier defined by \mathbf{w} and b

Prediction rule: $y = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$

Given: Training data $\{(x_1, y_1), \ldots, (x_N, y_N)\}$

Goal: Learn \mathbf{w} and b that achieve the maximum margin
Characterizing the margin

Let’s assume the entire training data is correctly classified by \((w, b)\) that achieve the maximum margin.

- Assume the hyperplane is such that:
 - \(w^T x_n + b \geq 1\) for \(y_n = +1\)
 - \(w^T x_n + b \leq -1\) for \(y_n = -1\)

 Equivalently, \(y_n (w^T x_n + b) \geq 1\)
 \[\Rightarrow \min_{1 \leq n \leq N} |w^T x_n + b| = 1\]

- The hyperplane’s margin:
 \[\gamma = \min_{1 \leq n \leq N} \frac{|w^T x_n + b|}{||w||} = \frac{1}{||w||}\]
The Optimization Problem

We want to maximize the margin $\gamma = \frac{1}{||w||}$

Maximizing the margin $\gamma = \text{minimizing } ||w||$ (the norm)

Our optimization problem would be:

Minimize $f(w, b) = \frac{||w||^2}{2}$

subject to $y_n(w^T x_n + b) \geq 1, \quad n = 1, \ldots, N$
Large Margin = Good Generalization

• Intuitively, large margins mean good generalization
 – Large margin => small $||w||$
 – small $||w||$ => regularized/simple solutions

• (Learning theory gives a more formal justification)
Solving the SVM Optimization Problem

Our optimization problem is:

Minimize \(f(w, b) = \frac{||w||^2}{2} \)
subject to \(1 \leq y_n(w^T x_n + b), \quad n = 1, \ldots, N \)

Introducing **Lagrange Multipliers** \(\alpha_n \ (n = \{1, \ldots, N\}) \), one for each constraint, leads to the **Lagrangian**:

Minimize \(L(w, b, \alpha) = \frac{||w||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b)\} \)
subject to \(\alpha_n \geq 0; \quad n = 1, \ldots, N \)
Solving the SVM Optimization Problem

Take (partial) derivatives of L_P w.r.t. \mathbf{w}, b and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n,$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize

$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$

subject to

$$\sum_{n=1}^{N} \alpha_n y_n = 0, \quad \alpha_n \geq 0; \quad n = 1, \ldots, N$$
Solving the SVM Optimization Problem

Take (partial) derivatives of L_P w.r.t. w, b and set them to zero

$$L_P = \sum_{n=1}^{N} \alpha_n y_n x_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize $L_D(w, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n)$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0, \quad \alpha_n \geq 0; \quad n = 1, \ldots, N$
SVM: the solution!

Once we have the α_n's, \mathbf{w} and b can be computed as:

$$
\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n
$$

$$
b = -\frac{1}{2} \left(\min_{n:y_n=+1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n=-1} \mathbf{w}^T \mathbf{x}_n \right)
$$

Note: Most α_n's in the solution are zero (sparse solution)

- **Reason:** Karush-Kuhn-Tucker (KKT) conditions
- **For the optimal α_n's**
 $$
 \alpha_n \{1 - y_n (\mathbf{w}^T \mathbf{x}_n + b)\} = 0
 $$

- α_n is **non-zero** only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n (\mathbf{w}^T \mathbf{x}_n + b) = 1$
- These examples are called **support vectors**
- Support vectors “support” the margin boundaries
SVM in the non-separable case

• no hyperplane can separate the classes perfectly

• We still want to find the max margin hyperplane, but
 – We will allow some training examples to be misclassified
 – We will allow some training examples to fall within the margin region
SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

$$y_n(w^T x_n + b) \geq 1 \quad \forall n$$

For the non-separable case, we **relax** the above constraints as:

$$y_n(w^T x_n + b) \geq 1 - \xi_n \quad \forall n$$

ξ_n is called **slack variable** (distance x_n goes past the margin boundary)

$\xi_n \geq 0, \forall n$, **misclassification** when $\xi_n > 1$
SVM Optimization Problem

Non-separable case: We will allow misclassified training examples
- but we want their number to be minimized
 \[\Rightarrow \text{by minimizing the sum of slack variables} \left(\sum_{n=1}^{N} \xi_n \right) \]

The optimization problem for the non-separable case

\[
\text{Minimize } f(w, b) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to } y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N
\]

C hyperparameter dictates which term dominates the minimization
- Small C => prefer large margins and allows more misclassified examples
- Large C => prefer small number of misclassified examples, but at the expense of a small margin
Soft SVM

- Same optimization as:

\[
\min_{\mathbf{w}, b} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{n=1}^{N} \max\left\{ 1 - y_n (\mathbf{w}^T \mathbf{x}_n), 0 \right\}
\]

Hinge loss!

- Why?

- Have you seen this loss function before?
Our goal in 422

• Learning is the process of obtaining expertise from experience

• Our goal: learning “Machine Learning”
Beyond 422...

• Machine learning is everywhere
• Many opportunities to create new high impact applications

• But **challenging issues** arise
 – Fairness
 – Robustness
 – Interpretability
 – Privacy
 – ...
What you should know: Linear Models

• What are linear models?
 – a general framework for binary classification
 – how optimization objectives are defined
 • loss functions and regularizers
 – separate model definition from training algorithm
 (Gradient Descent)
What you should know: Gradient Descent

• Gradient descent
 – a generic algorithm to minimize objective functions
 – what are the properties of the objectives for which it works well?
 – subgradient descent (ie what to do at points where derivative is not defined)
 – why choice of step size, initialization matter
What you should know: Probabilistic Models

• The Naïve Bayes classifier
 – Conditional independence assumption
 – How to train it?
 – How to make predictions?
 – How does it relate to other classifiers we know?

• Fundamental Machine Learning concepts
 – iid assumption
 – Bayes optimal classifier
 – Maximum Likelihood estimation
What you should know: Neural Networks

– What are Neural Networks?
 • Multilayer perceptron

– How to make a prediction given an input?
 • Forward propagation: Matrix operations + non-linearities

– Why are neural networks powerful?
 • Universal function approximators!

– How to train neural networks?
 • The backpropagation algorithm
 – How to step through it, and how to derive update rules
What you should know: PCA

- Principal Components Analysis
 - Goal: Find a projection of the data onto directions that maximize variance of the original data set
 - PCA optimization objectives and resulting algorithm
 - Why this is useful!
What you should know: Kernels

• Kernel functions
 – What they are, why they are useful, how they relate to feature combination

• Kernelized perceptron
 – You should be able to derive it and implement it
What you should know: SVMs

• What are Support Vector Machines
 – Hard margin vs. soft margin SVMs

• How to train SVMs
 – Which optimization problem we need to solve

• Geometric interpretation
 - What are support vectors and what is their relation with parameters w, b?

• How do SVM relate to the general formulation of linear classifiers

• Why/how can SVMs be kernelized