Canny Edge Detection

Mohammad Nayeem Teli
Optimal Edge Detection: Canny

Assume:
 • Linear filtering
 • Additive iid Gaussian noise

Edge detector should have:
 • Good Detection. Filter responds to edge, not noise.
 • Good Localization: detected edge near true edge.
 • Single Response: one per edge.
Optimal Edge Detection: Canny (continued)

Optimal Detector is approximately Derivative of Gaussian.

Detection/Localization trade-off

- More smoothing improves detection
- And hurts localization.

This is what you might guess from (detect change) + (remove noise)
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient
4. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width
5. Linking and thresholding (hysteresis):
 • Define two thresholds: low and high
 • Use the high threshold to start edge curves and the low threshold to continue them
The Canny edge detector

original image
Canny edge detector

1. Smoothing (noise reduction)

5 x 5 Gaussian kernel

\[
\frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}
\]

Filter: \((2k + 1) \times (2k + 1)\) \(-2 \leq k \leq 2\)

\(x = i - (k + 1); y = j - (k + 1)\) \(1 \leq i, j \leq 2k + 1\)
The Canny edge detector

original image

smoothed image
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)

\[h_x = \begin{bmatrix} -1. & 0. & 1. \\ -2. & 0. & 2. \\ -1. & 0. & 1. \end{bmatrix} \]

\[h_y = \begin{bmatrix} 1. & 2. & 1. \\ 0. & 0. & 0. \\ -1. & -2. & -1. \end{bmatrix} \]
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient

\[G = \sqrt{F_x^2 + F_y^2} \]
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient

\[\theta = \tan^{-1}\left(\frac{F_y}{F_x} \right) \]
Non-maximum suppression

Check if pixel is local maximum along gradient direction

- requires checking interpolated pixels p and r
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation
4. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation
4. Non-maximum suppression:
 - Thin multi-pixel wide “ridges” down to single pixel width
Canny edge detector

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient
4. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width
5. Linking and thresholding (hysteresis):
 • Define two thresholds: low and high

Upper threshold based on the max intensity
lower threshold based on some percentage of the upper threshold
1. **Linking and thresholding (hysteresis):**
 - Define two thresholds: low and high

 Upper threshold based on the max intensity

 Lower threshold based on some percentage of the upper threshold

 Example:

 Upper threshold - 90% of max
 Lower threshold - 35%

<table>
<thead>
<tr>
<th><= lower threshold</th>
<th>lower threshold < intensity < upper threshold</th>
<th>>= upper threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>irrelevant</td>
<td>weak</td>
<td>strong</td>
</tr>
</tbody>
</table>
Canny edge detector - double threshold

1. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high

 Upper threshold based on the max intensity
 lower threshold based on some percentage of the upper threshold

 Example:
 - Upper threshold - 90% of max
 - lower threshold - 35%

 \[
 \begin{array}{|c|c|c|}
 \hline
 & \leq \text{lower threshold} & \text{lower threshold} < \text{intensity} < \text{upper threshold} \\
 \text{irrelevant} = 0 & \text{weak} = \text{low threshold} & \geq \text{upper threshold} \\
 \text{strong} = 255 \\
 \hline
 \end{array}
 \]
Canny edge detector - Hysteresis

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient
4. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width
5. Linking and thresholding (hysteresis):
 • Define two thresholds: low and high
 • replace with the strong edge if any of the neighboring pixels is strong, else make it irrelevant.
Canny edge detector - Hysteresis

1. Smoothing (noise reduction)
2. Find derivatives (gradients)
3. Find magnitude and orientation of gradient
4. Non-maximum suppression:
 • Thin multi-pixel wide “ridges” down to single pixel width
5. Linking and thresholding (hysteresis):
 • Define two thresholds: low and high
 • replace with the strong edge if any of the neighboring pixels is strong, else make it irrelevant.
Canny Edge Detection (Example)

Original image

Strong edges only

Strong + connected weak edges

gap is gone

Weak edges

courtesy of G. Loy
The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features
Scale

Smoothing
Eliminates noise edges.
Makes edges smoother.
Removes fine detail.

(Forsyth & Ponce)
fine scale
high threshold
coarse scale low threshold
Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.

- Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.
Filter Bank

Leung & Malik, Representing and Recognizing the Visual Appearance using 3D Textons, IJCV 2001
Learning to detect boundaries

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
pB boundary detector

Martin, Fowlkes, Malik 2004: Learning to Detection Natural Boundaries...

Figure from Fowlkes
pB Boundary Detector

- Estimate Posterior probability of boundary passing through centre point based on local patch based features
- Using a Supervised Learning based framework
Human (0.95)
Pb (0.88)
Results

Human (0.96)

Global Pb

Pb (0.88)