CMSC 754:Spring 2020 Dave Mount

Homework 1: Convexity and Hulls

Handed out Tuesday, Feb 11. Due at the start of class on Tuesday, Feb 18. Late homeworks are not accepted
(unless an extension has been prearranged) so please turn in whatever you have completed by the due date.
Unless otherwise specified, you may assume that all inputs are given in general position.

Problem 1. In this problem, we will consider a few applications of orientation testing. In each case, express
the answer in terms of orientation tests in 2- or 3-dimensions.

(a) You are given four points a, b, ¢, and d in R2. Determine whether the line segments ab and
cd intersect (see Fig. a)). (You do not need to compute the intersection point itself. If they
intersect, you may assume that they intersect in a single point in their interiors.)

d

(a)
Figure 1: Orientation testing.

(b) You are given a set of points P = {p1,...,p,} in R? and two additional points gg and ¢;. Among
the points of P that lie strictly to the left of the dlrected line goqi qoql7 compute the point p; that
minimizes the counterclockw1se angle between the rays q0q1 and q1p; q1p; (see Fig. l(b If no point
of P lies to the left of goqi qoqi, your algorithm should report this. Your solution should employ O(n)
orientation tests. (Note: The notion of being “left” of a directed line means on the left side of
the line with respect to an observer facing the line’s direction.)

(c) You are given five points a, b, ¢, p and ¢q in R3. Determine whether the line segment pq intersects
the triangle Aabe (see Fig. [I[c)). (You may assume that p and ¢ do not lie in the plane spanned
by Aabc and that if there is an intersection, it occurs in the interior of the triangle.)

Problem 2. Consider a convex polygon P presented as a counterclockwise sequence of vertices (p1,...,Dn),
and let ¢ be a point that is external to P (see Fig.|2). Present an O(logn)-time algorithm that computes
a vertex p; that defines a support line passing through ¢ so that P lies to the left of the directed line

. For full credit, your algorithm should access points only through orientation tests.

Hlnt: Indexing and bisecting circular arrays can be a bit messy given issues with wrapping around.
Given two vertices p; and pg, let ccw(i, k) denote the subsequence of vertices along the boundary of
P between p; and pg in counterclockwise order. You may assume that you have access to a function
bisect (4, k) which in O(1) time returns an index m that splits this vertex chain into two subsequences
cew (i, m) and ccw(m, k) each having roughly an equal number of vertices.

Problem 3. The objective of this problem is to explore possible variations in the guessing sequence for
Chan’s convex hull algorithm for an n-element point set P. Let h denote the size of the final convex
hull. Recall that ConditionalHull(P, h*) returns the convex hull of P if h* > h and “fail” otherwise,
and the algorithm iteratively guesses values of h* through repeated squaring. Here is a equivalent
version of the one given in class.



Pn

Figure 2: Orientation testing.

(1) i + 1; status <« fail

(2) while (status == fail)
(a) h* < min(22",n)
(b) status < ConditionalHull(P, h*)
(¢c) i<i+1

(3) return status

What if we do not use repeated squaring? In each of the following cases, indicate what the running
time of Chan’s algorithm would be had we replaced the expression in line (2a). (Express your answer
using O-notation as a function of n and h.) In each case, explain how you derived your answer.

(a) h* < min(i®, n) (quadratic progression)
(b) h* < min(2%,n) (repeated doubling)

i

2
(¢) h* « min(\@f ,n)
You may assume any standard results on summations, e.g., the Wikipedia page on summations.

Problem 4. A polygonal chain in the plane is a sequence of vertices C' = (p1,. .., pn), where each consecutive
pair (p;,pi+1) is connected by a line segment, called an edge. Such a chain is said to be strictly
horizontally monotone if any vertical line intersects the chain in a single point. A collection of chains
is said to be independent if no two intersect each other (see Fig. [3).

Figure 3: A set of independent monotone polygonal chains.

Present an algorithm which, given a set of k strictly monotone polygonal chains C = {C1,...,Ck},
determines whether they are independent. Your algorithm does not need to report the intersections,
it just needs indicate whether any intersection exists. Let n; denote the number of vertices in the
1th chain, and let n = Zle n; be the total size of all the chains. Your algorithm should run in time
O(nlogk). (Hint: Use plane sweep, but do it efficiently.)

Challenge Problem. (Challenge problems count for extra credit points. These additional points are fac-
tored in only after the final cutoffs have been set, and can only increase your final grade.)

Given a set P = {p1,...,pn} of n points in the plane, the minimum horizontal trapezoid is a trapezoid
of minimum area that contains P such that two of its sides are horizontal (see Fig. [4b)). If there are
multiple trapezoids of the same area, any one of them may be chosen.


http://en.wikipedia.org/wiki/Summation

SES | [j

(a) (b) (c

Figure 4: Challenge Problem: Minimum horizontal trapezoid

(a) Clearly, the horizontal sides of the trapezoid pass through topmost and bottommost points of P.
What properties should the left and right sides have to yield the minimum area?

(b) Based on your answer to (a), present an O(nlogn) time algorithm for computing the minimum
horizontal trapezoid of P.

(c) Suppose that P is given as a convex polygon with n vertices (see Fig. [f{c)). Explain how to
compute the minimum horizontal trapezoid in O(logn) time.

Some tips about writing algorithms: Throughout the semester, whenever you are asked to present an
“algorithm,” you should present three things: the algorithm, an informal proof of its correctness, and a
derivation of its running time. Remember that your description is intended to be read by a human, not a
compiler, so conciseness and clarity are preferred over technical details. Unless otherwise stated, you may
use any results from class, or results from any standard textbook on algorithms and data structures. Also,
you may use results from geometry that: (1) have been mentioned in class, (2) would be known to someone
who knows basic geometry or linear algebra, or (3) is intuitively obvious. If you are unsure, please feel free
to check with me.

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are encouraged to
use intuition and give illustrations whenever appropriate. Beware, however, that a poorly drawn figure can
make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in general
position. For example, you may assume that no two points have the same z-coordinate, no three points are
collinear, no four points are cocircular. Also, unless otherwise stated, you may assume that any geometric
primitive involving a constant number of objects each of constant complexity can be computed in O(1) time.



