
CMSC 754 Dave Mount

CMSC 754: Lecture 2
Convex Hulls in the Plane

Reading: Some of the material of this lecture is covered in Chapter 1 in the 4M’s (de Berg, Cheong,
van Kreveld, Schwarzkopf). The divide-and-conquer algorithm is given in Joseph O’Rourke’s,
“Computational Geometry in C.”

Convex Hulls: In this lecture we will consider a fundamental structure in computational geom-
etry, called the convex hull. We will give a more formal definition later, but, given a set
P of points in the plane, the convex hull of P , denoted conv(P ), can be defined intuitively
by surrounding a collection of points with a rubber band and then letting the rubber band
“snap” tightly around the points (see Fig. 1).

P conv(P )

Fig. 1: A point set and its convex hull.

The (planar) convex hull problem is, given a discrete set of n points P in the plane, output a
representation of P ’s convex hull. The convex hull is a closed convex polygon, the simplest
representation is a counterclockwise enumeration of the vertices of the convex hull. In higher
dimensions, the convex hull will be a convex polytope. We will discuss the representation of
polytopes in future lectures, but in 3-dimensional space, the representation would consist of
a vertices, edges, and faces that constitute the boundary of the polytope.

There are a number of reasons that the convex hull of a point set is an important geometric
structure. One is that it is one of the simplest shape approximations for a set of points.
(Other examples include minimum area enclosing rectangles, circles, and ellipses.) It can also
be used for approximating more complex shapes. For example, the convex hull of a polygon
in the plane or polyhedron in 3-space is the convex hull of its vertices.

Also many algorithms compute the convex hull as an initial stage in their execution or to
filter out irrelevant points. For example, the diameter of a point set is the maximum distance
between any two points of the set. It can be shown that the pair of points determining the
diameter are both vertices of the convex hull. Also observe that minimum enclosing convex
shapes (such as the minimum area rectangle, circle, and ellipse) depend only on the points of
the convex hull.

Convexity: Before getting to discussion of the algorithms, let’s begin with a few standard defini-
tions regarding convexity and convex sets. For any d ≥ 1, let Rd denote real d-dimensional
space, that is, the set of d-dimensional vectors over the real numbers.

Affine and convex combinations: Given two points p = (px, py) and q = (qx, qy) in Rd,
we can generate any point on the line ←→pq as a linear combination of their coordinates,
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where the coefficient sum to 1:

(1− α)p+ αq = ((1− α)px + αqx, (1− α)py + αqy).

This is called an affine combination of p and q (see Fig. 2(a)).
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Fig. 2: Affine and convex combinations.

By adding the additional constraint that 0 ≤ α ≤ 1, the set of points generated lie on
the line segment pq (see Fig. 2(b)). This is called a convex combination. Notice that this
can be viewed as taking a weighted average of p and q. As α approaches 1, the point
lies closer to p and when α approaches zero, the point lies closer to q.

It is easy to extend both types of combinations to more than two points. For example,
given k points {p1, . . . , pk} an affine combination of these points is the linear combination

k∑
i=1

αipi, such that α1 + · · ·+ αk = 1.

When 0 ≤ αi ≤ 1 for all i, the result is called a convex combination.

The set of all affine combinations of three (non-collinear) points generates a plane, and
generally, the resulting set is called the affine span or affine closure of the points. The
set of all convex combinations of a set of points is the convex hull of the point set.

Convexity: A set K ⊆ Rd is convex if given any points p, q ∈ K, the line segment pq
is entirely contained within K (see Fig. 3(a)). This is equivalent to saying that K
is “closed” under convex combinations. Examples of convex sets in the plane include
circular disks (the set of points contained within a circle), the set of points lying within
any regular n-sided polygon, lines (infinite), line segments (finite), rays, and halfspaces
(that is, the set of points lying to one side of a line).

Open/Closed: A set in Rd is said to be open if it does not include its boundary. (The
formal definition is a bit messy, so I hope this intuitive definition is sufficient.) A set
that includes its boundary is said to be closed. (See Fig. 3(b).)

Boundedness: A convex set is bounded if it can be enclosed within a sphere of a fixed radius.
Otherwise, it is unbounded (see Fig. 3(c)). For example, line segments, regular n-gons,
and circular disks are all bounded. In contrast, lines, rays, halfspaces, and infinite cones
are unbounded.

Convex body: A closed, bounded convex set is called a convex body.
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Fig. 3: Basic definitions.

Support line/hyperplane: An important property of any convex set K in the plane is that
at every point p on the boundary of K, there exists at least one line ` (or generally a
(d − 1)-dimensional hyperplane in higher dimensions) that passes through p such that
K lies entirely in one of the closed halfplanes (halfspaces) defined by ` (see Fig. 3(d)).
Such a line is called a support line for K. Observe that there may generally be multiple
support lines passing through a given boundary point of K (e.g., when the point is a
vertex of the convex hull).

Equivalent definitions: We can define the convex hull of a set of points P either in an
additive manner as the closure of all convex combinations of the points or in a subtractive
manner as the intersection of the set of all halfspaces that contain the point set.

When computing convex hulls, we will usually take P to be a finite set of points. In such a
case, conv(P ) will be a convex polygon. Generally P could be an infinite set of points. For
example, we could talk about the convex hull of a collection of circles. The boundary of such
a shape would consist of a combination of circular arcs and straight line segments.

General Position: As in many of our algorithms, it will simplify the presentation to avoid lots
of special cases by assuming that the points are in general position. This effectively means
that degenerate configurations (e.g., two points sharing the same x or y coordinate, three
points being collinear, etc.) do not arise in the input. More specifically, a point set fails to
be in general position if it possesses some property (such as collinearity) that fails to hold if
the point coordinates are perturbed infinitesimally. General position assumptions are almost
never critical to the efficiency of an algorithm. They are merely a convenience to avoid the
need of dealing with lots of special cases in designing our algorithms.

Graham’s scan: We will begin with a presentation of a simple O(n log n) algorithm for the convex
hull problem. It is a simple variation of a famous algorithm for convex hulls, called Graham’s
scan, which dates back to the early 1970’s. The algorithm is loosely based on a common ap-
proach for building geometric structures called incremental construction. In such a algorithm
object (points here) are added one at a time, and the structure (convex hull here) is updated
with each new insertion.

An important issue with incremental algorithms is the order of insertion. If we were to add
points in some arbitrary order, we would need some method of testing whether the newly
added point is inside the existing hull. It will simplify things to add points in some appropri-
ately sorted order, in our case, in increasing order of x-coordinate. This guarantees that each
newly added point is outside the current hull. (Note that Graham’s original algorithm sorted
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points in a different way. It found the lowest point in the data set and then sorted points
cyclically around this point. Sorting by x-coordinate seems to be a bit easier to implement,
however.)

Since we are working from left to right, it would be convenient if the convex hull vertices were
also ordered from left to right. As mentioned above, the convex hull is a convex polygon,
which can be represented as a cyclic sequence of vertices. It will make matters a bit simpler
for us to represent the boundary of the convex hull as two polygonal chains, one representing
its upper part, called the upper hull and one representing the lower part, called the lower hull
(see Fig. 4(a)).

pnp1

upper hull

lower hull

(b)(a)

pij

pij−1

pij−2

Fig. 4: (a) Upper and lower hulls and (b) the left-hand turn property of points on the upper hull.

It suffices to show how to compute the upper hull, since the lower hull is symmetrical. (Just flip
the picture upside down.) Once the two hulls have been computed, we can simply concatenate
them with the reversal of the other to form the final hull.

Observe that a point p ∈ P lies on the upper hull if and only if there is a support line passing
through p such that all the points of P lie on or below this line. Our algorithm will be based
on the following lemma, which characterizes the upper hull of P . This is a simple consequence
of the convexity. The first part says that the line passing through each edge of the hull is a
support line, and the second part says that as we walk from right to left along the upper hull,
we make successive left-hand turns (see Fig. 4(b)).

Lemma 1: Let 〈pi1 , . . . , pim〉 denote the vertices of the upper hull of P , sorted from left to
right. Then for 1 ≤ j ≤ m, (1) all the points of P lie on or below the line pijpij−1 joining
consecutive vertices and (2) each consecutive triple 〈pijpij−1pij−2〉 forms a left-hand turn.

Let 〈p1, . . . , pn〉 denote the sequence of points sorted by increasing order of x-coordinates.
For i ranging from 1 to n, let Pi = 〈p1, . . . , pi〉. We will store the vertices of the upper hull of
Pi on a stack S, where the top-to-bottom order of the stack corresponds to the right-to-left
order of the vertices on the upper hull. Let S[t] denote the stack’s top. Observe that as we
read the stack elements from top to bottom (that is, from right to left) consecutive triples of
points of the upper hull form a (strict) left-hand turn (see Fig. 4(b)). As we push new points
on the stack, we will enforce this property by popping points off of the stack that violate it.

Turning and orientations: Before proceeding with the presentation of the algorithm, we should
first make a short digression to discuss the question of how to determine whether three points
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form a “left-hand turn.” This can be done by a powerful primitive operation, called an
orientation test, which is fundamental to many algorithms in computational geometry.

Given an ordered triple of points 〈p, q, r〉 in the plane, we say that they have positive orien-
tation if they define a counterclockwise oriented triangle (see Fig. 5(a)), negative orientation
if they define a clockwise oriented triangle (see Fig. 5(b)), and zero orientation if they are
collinear, which includes as well the case where two or more of the points are identical (see
Fig. 5(c)). Note that orientation depends on the order in which the points are given.

(a) (b) (c)

p

q

r

p

q
r

p

q

r p = r

q

orient(p, q, r) > 0 orient(p, q, r) < 0 orient(p, q, r) = 0

Fig. 5: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homoge-
neous coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane,
we define

Orient(p, q, r) = det

 1 px py
1 qx qy
1 rx ry

 .

Observe that in the 1-dimensional case, Orient(p, q) is just q−p. Hence it is positive if p < q,
zero if p = q, and negative if p > q. Thus orientation generalizes the familiar 1-dimensional
binary relations <,=, >.

Also, observe that the sign of the orientation of an ordered triple is unchanged if the points
are translated, rotated, or scaled (by a positive scale factor). A reflection transformation
(e.g., f(x, y) = (−x, y)) reverses the sign of the orientation. In general, applying any affine
transformation to the point alters the sign of the orientation according to the sign of the
determinant of the matrix used in the transformation. (By the way, the notion of orientation
can be generalized to d + 1 points in d-dimensional space, and is related to the notion of
chirality in Chemistry and Physics. For example, in 3-space the orientation is positive if the
point sequence defines a right-handed screw.)

Given a sequence of three points p, q, r, we say that the sequence 〈p, q, r〉 makes a (strict)
left-hand turn if Orient(p, q, r) > 0.

Graham’s algorithm continued: Returning to the algorithm, let us consider the insertion of
the ith point, pi (see Fig. 6(a)). First observe that pi is on the upper hull of Pi (since it is
the rightmost point seen so far). Let pj be its predecessor on the upper hull of Pi. We know
from Lemma 1 that all the points of Pi lie on or below the line pipj . Let pj−1 be the point
immediately preceding pj on the upper hull. We also know from this lemma that 〈pipjpj−1〉
forms a left-hand turn. Clearly then, if any triple 〈pi, S[t], S[t− 1]〉 does not form a left-hand
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turn (that is, Orient(pi, S[t], S[t − 1]) ≤ 0), we may infer that S[t] is not on the upper hull,
and hence it is safe to delete it by popping it off the stack. We repeat this until we find a
left-turning triple (see Fig. 6(b)) or hitting the bottom of the stack. Once this happens, we
push pi on top of the stack, making it the rightmost vertex on the upper hull (see Fig. 6(c)).
The algorithm is presented in the code block below.

(b)

pipj

(c)

pop

pipj

(a)

processing pi after adding pi
pipj

pop

before adding pi

Fig. 6: Graham’s scan.

Graham’s Scan

(1) Sort the points according to increasing order of their x-coordinates, denoted 〈p1, p2, . . . , pn〉.
(2) push p1 and then p2 onto S.

(3) for i← 3, . . . , n do:

(a) while (|S| ≥ 2 and Orient(pi, S[t], S[t− 1]) ≤ 0) pop S.

(b) push pi onto S.

Correctness: The correctness of the algorithm was essentially established by Lemma 1 and the
above explanation. (Where we showed that it is safe to pop all right-turning triples off the
stack, and safe to push pi.) The only remaining issue is whether we might stop too early.
In particular, might we encounter a left-turning triple before reaching pj? We claim that
this cannot happen. Suppose to the contrary that before reaching pj , we encounter triple
〈pi, S[t], S[t − 1]〉 that forms a left-hand turn, but S[t] 6= pj (see Fig. 7). We know that S[t]
lies to the right of pj . By Lemma 1, all the points of Pi−1 (including pj) lie on or below the

line S[t]S[t− 1]. But if pj lies below this line, it follows that the triple 〈pi, S[t], pj〉 forms a
left-hand turn, and this implies that S[t] lies above the line pjpi. This contradicts Lemma 1,
because by our hypothesis, pjpi is an edge of the upper hull of Pi, and no point of Pi can lie
above an edge of the upper hull.

S[t]

pi
S[t− 1]

pj

Fig. 7: Correctness of Graham’s scan.

How much detail? A question that often arises at this point of the semester is, “how much detail
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is needed in giving a geometrical proof of correctness?” You might find the above proof to be
a bit too vague. There is a bit of art between the extremes of producing proofs that are not
convincing from those that contain excessive details. Whenever feasible, you should reduce
base-level assertions to configurations involving just a constant number of points (e.g., the
points involved in an orientation test). It may be helpful to add additional constructions
(e.g., support lines) to help illustrate points. Don’t be fooled by your drawings. Finally, note
that more detail is not always better. Your proof is intended to be read by a human, not
a compiler or automated proof verifier. You should rely your (intelligent) reader to fill in
low-level geometric reasoning.

Running-time analysis: We will show that Graham’s algorithm runs in O(n log n) time. Clearly,
it takes this much time for the initial sorting of the points. After this, we will show that O(n)
time suffices for the rest of the computation.

Let di denote the number of points that are popped (deleted) on processing pi. Because each
orientation test takes O(1) time, the amount of time spent processing pi is O(di + 1). (The
extra +1 is for the last point tested, which is not deleted.) Thus, the total running time is
proportional to

n∑
i=1

(di + 1) = n+
n∑

i=1

di.

To bound
∑

i di, observe that each of the n points is pushed onto the stack once. Once a
point is deleted it can never be deleted again. Since each of n points can be deleted at most
once,

∑
i di ≤ n. Thus after sorting, the total running time is O(n). Since this is true for the

lower hull as well, the total time is O(2n) = O(n).

Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches
to solving the convex hull problem for a planar point set P . Next, we will consider another
O(n log n) algorithm, which is based on divide-and-conquer. It can be viewed as a generaliza-
tion of the well-known MergeSort sorting algorithm (see any standard algorithms text). Here
is an outline of the algorithm. As with Graham’s scan, we will focus just on computing the
upper hull, and the lower hull will be computed symmetrically.

The algorithm begins by sorting the points by their x-coordinate, in O(n log n) time. In splits
the point set in half at its median x-coordinate, computes the upper hulls of the left and right
sets recursively, and then merges the two upper hulls into a single upper hull. This latter
process involves computing a line, called the upper tangent, that is a line of support for both
hulls. The remainder of the algorithm is shown in the code section below.

Divide-and-Conquer (Upper) Convex Hull

(1) If |P | ≤ 3, then compute the upper hull by brute force in O(1) time and return.

(2) Otherwise, partition the point set P into two sets P ′ and P ′′ of roughly equal sizes by a vertical line.

(3) Recursively compute upper convex hulls of P ′ and P ′′, denoted H ′ and H ′′, respectively (see Fig. 8(a)).

(4) Compute the upper tangent ` = p′p′′ (see Fig. 8(b)).

(5) Merge the two hulls into a single upper hull by discarding all the vertices of H ′ to the right of p′ and
the vertices of H ′′ to the left of p′′ (see Fig. 8(c)).
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p′′
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Fig. 8: Divide and conquer (upper) convex hull algorithm.

Computing the upper tangent: The only nontrival step is that of computing the common tan-
gent line between the two upper hulls. Our algorithm will exploit the fact that the two hulls
are separated by a vertical line. The algorithm operates by a simple “walking procedure.”
We initialize p′ to be the rightmost point of H ′ and p′′ to be the leftmost point of H ′′ (see
Fig. 9(a)). We will walk p′ backwards along H ′ and walk p′′ forwards along H ′′ until we hit the
vertices that define the tangent line. As in Graham’s scan, it is possible to determine just how
far to walk simply by applying orientation tests. In particular, let q′ be the point immediately
preceding p′ on H ′, and let q′′ be the point immediately following p′′ on H ′′. Observe that
if Orient(p′, p′′, q′′) ≥ 0, then we can advance p′′ to the next point along H ′′ (see Fig. 9(a)).
Symmetrically, if Orient(p′′, p′, q′) ≤ 0, then we can advance p′ to its predecessor along H ′

(see Fig. 9(b)). When neither of these conditions applies, that is, Orient(p′, p′′, q′′) < 0 and
Orient(p′′, p′, q′) > 0, we have arrived at the desired points of mutual tangency (see Fig. 9(c)).

(a) (b) (c)

p′ p′′

q′′

p′
p′′

q′ p′
q′

p′′
q′′

Orient(p′, p′′, q′′) ≥ 0 Orient(p′′, p′, q′) ≤ 0 Orient(p′′, p′, q′) > 0

Orient(p′, p′′, q′′) < 0 and

Fig. 9: Computing the upper tangent.

There is one rather messy detail in implementing this algorithm. This arises if either q′ or q′′

does not exist because we have arrived at the leftmost vertex of H ′ or the rightmost vertex
of H ′′. We can avoid having to check for these conditions by creating two sentinel points.
We create a new leftmost vertex for H ′ that lies infinitely below its original leftmost vertex,
and we create a new rightmost vertex for H ′′ that lies infinitely below its original rightmost
vertex. The tangency computation will never arrive at these points, and so we do not need
to add a special test for the case when q′ and q′′ do not exist. The algorithm is presented in
the following code block.

A formal proof of correctness of this procedure is similar to that of Graham’s scan (but
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Computing the Upper Tangent

UpperTangent(H ′, H ′′) :

(1) Let p′ be the rightmost point of H ′, and let q′ be its predecessor.

(2) Let p′′ be the leftmost point of H ′′, and let q′′ be its successor.

(3) Repeat the following until Orient(p′, p′′, q′′) < 0 and Orient(p′′, p′, q′) > 0:

(a) while (Orient(p′, p′′, q′′) ≥ 0) advance p′′ and q′′ to their successors on H ′′.

(b) while (Orient(p′′, p′, q′) ≤ 0) advance p′ and q′ to their predecessors on H ′.

(4) return (p′, p′′).

observe that there are now two tangency conditions to be satisfied, not just one). We will
leave it as an exercise. Observe that the running time is O(n), because with each step we
spend O(1) time and eliminate a point either from H ′ or from H ′′ as a candidate for the
tangency points, and there are at most n points that can be so eliminated.

Running-time analysis: The asymptotic running time of the algorithm can be expressed by a
recurrence. Given an input of size n, consider the time needed to perform all the parts of
the procedure, ignoring the recursive calls. This includes the time to partition the point set,
compute the upper tangent line, and return the final result. Clearly, each of these can be
performed in O(n) time, assuming any standard list representation of the hull vertices. Thus,
ignoring constant factors, we can describe the running time by the following recurrence:

T (n) =

{
1 if n ≤ 3
n+ 2T (n/2) otherwise.

This is the same recurrence that arises in Mergesort. It is easy to show that it solves to
T (n) ∈ O(n log n) (see any standard algorithms text).
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