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CMSC 754: Lecture 3
Convex Hulls: Lower Bounds and Output Sensitivity

Reading: Chan’s output sensitive algorithm can be found in T. Chan, “Optimal output-sensitive
convex hull algorithms in two and three dimensions”, Discrete and Computational Geometry, 16,
1996, 361–368.

Lower Bound and Output Sensitivity: Last time we presented two planar convex hull algo-
rithms, Graham’s scan and the divide-and-conquer algorithm, both of which run in O(n log n)
time. A natural question to consider is whether we can do better. Today, we will consider
this question.

Recall that the output of the convex hull problem a convex polygon, that is, a cyclic enumer-
ation of the vertices along its boundary. Thus, it would seem that in order to compute the
convex hull, we would “need” to sort the vertices of the hull. It is well known that it is not
generally possible to sort a set of n numbers faster than Ω(n log n) time, assuming a model
of computation based on binary comparisons. (There are faster algorithms for sorting small
integers, but these are not generally applicable for geometric inputs.)

Can we turn this intuition into a formal lower bound? We will show that in O(n) time it
is possible to reduce the sorting problem to the convex hull problem. This implies that any
O(f(n))-time algorithm for the convex hull problem implies an O(n + f(n))-time algorithm
for sorting. Clearly, f(n) cannot be smaller than Ω(n log n) for otherwise we would obtain an
immediate contradiction to the lower bound on sorting.

The reduction works by projecting the points onto a convex curve. In particular, let X =
{x1, . . . , xn} be the n values that we wish to sort. Suppose we “lift” each of these points onto
a parabola y = x2, by mapping xi to the point pi = (xi, x

2
i ). Let P denote the resulting set of

points (see Fig. 1). Note that all the points of P lie on its convex hull, and the sorted order of
points along the lower hull is the same as the sorted order X. Since it is trivial to obtain the
lower hull vertices in O(n) time, we can obtain the sorted order from the hull. This implies
the following theorem.
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Fig. 1: Reduction from sorting to convex hull.

Theorem: Assuming computations based on comparisons (e.g., orientation tests) any algo-
rithm for the convex hull problem requires Ω(n log n) time in the worst case.
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Is this the end of the story? Well, maybe not . . .

• What if we don’t require that the points be enumerated in cyclic order? For example,
suppose we just want to count number of points on the convex hull. Can we do better?

• Suppose that we are not interested in worst-case behavior. For example, in many in-
stances of convex hull, relatively few points lie on the boundary of the hull.

We will present three other results in this lecture:

• We will present a convex hull algorithm that runs O(nh) time, where h is the number of
vertices on the hull. (This is beats the worst-case bound is h is asymptotically smaller
than O(log n).)

• We will present Chan’s algorithm, which computes convex hulls in O(n log h) time.

• We will present a lower bound argument that shows that, assuming a comparison-based
algorithm, even answering the question “does the convex hull have h distinct vertices?”
requires Ω(n log h) time.

The last result implies that Chan’s algorithm is essentially the best possible as a function of
h and n.

Gift-Wrapping and Jarvis’s March: Our next convex hull algorithm, called Jarvis’s march,
computes the convex hull in O(nh) time by a process called “gift-wrapping.” In the worst
case, h = n, so this is inferior to Graham’s algorithm for large h, it is superior if h is
asymptotically smaller than log n, that is, h = o(log n). An algorithm whose running time
depends on the output size is called output sensitive.

The algorithm begins by identifying any one point of P that is guaranteed to be on the hull,
say, the point with the smallest y-coordinate. Call this p1. It then repeatedly finds the next
vertex on the hull in counterclockwise order (see Fig. 2(a)). Suppose that pi−1 and pi are the
last two vertices of the hull. The next vertex is the point pk ∈ P \ {pi−1, pi} that minimizes
the angle between the source ray −−−→pi−1pi and the target ray −−→pipk (see Fig. 2(b)). As usual, we
assume general position, so this point is unique. But if not, we take the one that is farthest
from pi. Note that we do not need to compute actual angles. This can all be done with
orientation tests. (Try this yourself.) The algorithm stops on returning to p1.

Clearly, each iteration can be performed in O(n) time, and after h iterations, we return to
the starting vertex. Thus, the total time is O(nh). As a technical note, the algorithm can
be simplified by adding a sentinel point p0 at the (conceptual) coordinates (−∞, 0). The
algorithm starts with the horizontal ray −−→p0p1 (see Fig. 2(c)).

Chan’s Algorithm: Depending on the value of h, Graham’s scan may be faster or slower than
Jarvis’ march. This raises the intriguing question of whether there is an algorithm that always
does as well or better than these algorithms. Next, we present a planar convex hull algorithm
by Timothy Chan whose running time is O(n log h).

While this algorithm is too small an improvement over Graham’s algorithm to be of significant
practical value, it is quite interesting nonetheless from the perspective of the techniques that
it uses:
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Fig. 2: Jarvis’s march.

• It combines two slower algorithms, Graham’s and Jarvis’s, to form a faster algorithm.

• It employs an interesting guessing strategy to determine the value of a key unknown
parameter, the number h of vertices on the hull.

Chan’s algorithm: The principal shortcoming of Graham’s scan is that it sorts all the points,
and hence is doomed to having an Ω(n log n) running time, irrespective of the size of the hull.
While Jarvis’s algorithm is not limited in this way, it is way too slow if there are many points
on the hull.

The first observation needed for a better approach is that, if we hope to achieve a running
time of O(n log h), we can only afford a log factor depending on h. So, if we run Graham’s
algorithm, we are limited to sorting sets of size at most h.

Actually, any polynomial in h will work as well. For example, we could sort a set of size
h2, provided that h2 is O(n). This is because h2 log(h2) = 2h2 log h = O(n log h). This
observation will come in handy later on. So, henceforth, let us imagine that a “little magical
bird” tells us a number h∗ such that the actual number of vertices on the convex hull satisfies
h ≤ h∗ ≤ min(h2, n). (We will address this issue of the little magical bird later on.)

Original point set
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Fig. 3: Partition and mini-hulls.

Step 1: Mini-hulls We start by partitioning the point set P into groups of size h∗ (the
last group may have fewer than h∗ elements). Call these P1, . . . , Pm where r = dn/h∗e
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(see Fig. 3(b)). This can be done arbitrarily, without any regard for their geometric
structure. By Graham’s algorithm, we can compute the convex hull of each subset in
time O(h∗ log h∗). Let H1, . . . ,Hm denote the resulting mini-hulls. The total time to
compute all the mini-hulls is

O(r(h∗ log h∗)) = O((n/h∗)h∗ log h∗) = O(n log h∗) = O(n log h).

Good so far. We are within our overall time budget

Step 2: Merging the minis: The high-level idea is to run Jarvis’s algorithm, but we treat
each mini-hull as if it is a “fat point” (see Fig. 4(a)). Recall that in Jarvis’s algorithm,
we computed the angle between a source ray and a target ray, where the source ray
−−−→pi−1pi was the previous edge of the hull and the target ray −−→pipk went to the next vertex
of the hull. We modify this so that the target ray will now be a “tangent ray” or more
properly a line of support for a mini-hull Hk that passes through pi and has Hk lying to
the left of the ray, from the perspective of someone facing the direction of the ray (see
Fig. 4(b)). Among all the mini-hulls, Hk is the one that minimizes the angles in these
rays (see Fig. 4(c)).
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Fig. 4: Using Jarvis’s algorithm to merge the mini-hulls.

Note that the current edge −−−→pi−1pi is on the global convex hull, so it cannot lie in the
interior of any of the mini-hulls. Among all these tangents, we take the one that yields
the smallest external angle (see Fig. 4(c)). Since each of the mini-hulls is represented as
a convex polygon having at most h∗ vertices, we claim that we can compute this tangent
in O(log h∗) = O(log h) time through a variant of binary search. This is formalized in
the following lemma, whose proof we will leave as an exercise.

Lemma: Consider a convex polygon K in the plane stored as an array of vertices in
cyclic order, and let p be any point external to K. The two supporting lines of K
passing through p can each be computed in time O(logm), where m is the number
of vertices of K.

Each step of Jarvis’s algorithm on the mini-hulls takes O(r log h∗) = O(r log h) time to
compute the support lines and select the one forming the smallest angle.
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The Conditional Algorithm: We can now present a conditional algorithm for computing the
convex hull. The algorithm is given a point set P and an estimate h∗ of the number of
vertices on P ’s convex hull. Letting h denote the actual number of vertices, if h ≤ h∗,
then this algorithm computes the final hull. Otherwise, the algorithm “fails”, reporting that
h > h∗, and terminates. This is presented in the code block below.

Chan’s Algorithm for the Conditional Hull Problem

ConditionalHull(P, h∗) :

(1) Let r ← dn/h∗e
(2) Partition P into disjoint subsets P1, . . . , Pr, each of size at most h∗

(3) For i← 1 to r:

i Compute Hi = conv(Pi) using Graham’s scan and store the vertices in an ordered array

(4) Let p0 ← (−∞, 0) and let p1 be the bottommost point of P

(5) For i← 1 to h∗:

(a) For j ← 1 to r:

i Compute the support line of Hj that passes through pi, and let qj be the associated vertex
of Hj

(b) Set pi+1 be the point of {q1, . . . , qr} that minimizes the angle between the rays −−−−→pi−1pi and
−−→piqj

(c) If pi+1 = p1 then return success (〈p1, . . . , pk〉 is the final hull)

(6) Return failure (conv(P ) has more than h∗ vertices)

Observe the following: (1) the Jarvis phase never performs for more than h∗ stages, and (2)
if h ≤ h∗, the algorithm succeeds in computing the entire hull. To analyze its running time,
recall that the computation of the mini-hulls takes O(n log h) time (under the assumption that
h∗ ≤ h2). Each iteration of the Jarvis phase takes O(r log h) time, where r ≈ n/h∗. Since there
cannot be more than h∗ iterations, this takes total time O(h∗r log h) = O(h∗(n/h∗) log h) =
O(n log h) time. So, we are within our overall time budget.

Determining the Hull’s Size: The only question remaining is how do we know what value to
give to h∗? Remember that, if h∗ ≥ h, the algorithm will succeed in computing the hull,
and if h∗ ≤ h2, the running time of the restricted algorithm is O(n log h). Clearly we do not
want to try a value of h∗ that is way too high, or we are doomed to having an excessively
high running time. So, we should start our guess small, and work up to larger values until
we achieve success. Each time we try a test value h∗ < h, the restricted hull procedure may
tell us we have failed, and so we need to increase the value if h∗.

As a start, we could try h∗ = 1, 2, 3, . . . , i, until we luck out as soon as h∗ = h. Unfortunately,
this would take way too long. (Convince yourself that this would result in a total time of
O(nh log h), which is even worse than Jarvis’s march.)

The next idea would be to perform a doubling search. That is, let’s try h∗ = 1, 2, 4, 8, . . . , 2i.
When we first succeed, we might have overshot the value of h, but not by more than a factor
of 2, that is h ≤ h∗ ≤ 2h. The convex hull will have at least three points, and clearly for
h ≥ 3, we have 2h ≤ h2. Thus, this value of h∗ will satisfy our requirements. Unfortunately,
it turns out that this is still too slow. (You should do the analysis yourself and convince
yourself that it will result in a running time of O(n log2 h). Better but still not the best.)
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So if doubling is not fast enough, what is next? Recall that we are allowed to overshoot the
actual value of h by as much as h2. Therefore, let’s try repeatedly squaring the previous guess.
In other words, let’s try h∗ = 2, 4, 16, . . . , 22

i
. Clearly, as soon as we reach a value for which

the restricted algorithm succeeds, we have h ≤ h∗ ≤ h2. Therefore, the running time for this
stage will be O(n log h). But what about the total time for all the previous stages?

To analyze the total time, consider the ith guess, h∗i = 22
i
. The ith trial takes time

O(n log h∗i ) = O
(
n log 22

i)
= O(n2i). We know that we will succeed as soon as h∗i ≥ h,

that is if i = dlg lg he. (Throughout the semester, we will use “lg” to denote logarithm base
2 and “log” when the base does not matter.1) Thus, the algorithm’s total running time (up
to constant factors) is

T (n, h) =

lg lg h∑
i=1

n2i = n

lg lg h∑
i=1

2i.

The summation is a geometric series. It is well known that a geometric series is asymptotically
dominated by its largest term. Thus, we obtain a total running time of

T (n, h) < n · 2dlg lg he < n · 21+lg lg h = n · 2 · 2lg lg h = 2n lg h = O(n log h),

which is just what we want. In other words, by the “miracle” of the geometric series, the
total time to try all the previous failed guesses is asymptotically the same as the time for the
final successful guess. The final algorithm is presented in the code block below.

Chan’s Complete Convex Hull Algorithm

Hull(P ) :

(1) h∗ ← 2; status← fail

(2) while status 6= fail:

(a) Let h∗ ← min((h∗)2, n)

(b) status← ConditionalHull(P, h∗)

(3) Return L.

Lower Bound (Optional): We show that Chan’s result is asymptotically optimal in the sense
that any algorithm for computing the convex hull of n points with h points on the hull requires
Ω(n log h) time. The proof is a generalization of the proof that sorting a set of n numbers
requires Ω(n log n) comparisons.

If you recall the proof that sorting takes at least Ω(n log n) comparisons, it is based on the
idea that any sorting algorithm can be described in terms of a decision tree. Each comparison
has at most three outcomes (<, =, or >). Each such comparison corresponds to an internal
node in the tree. The execution of an algorithm can be viewed as a traversal along a path
in the resulting ternary (3-way splitting) tree. The height of the tree is a lower bound on
the worst-case running time of the algorithm. There are at least n! different possible inputs,
each of which must be reordered differently, and so you have a ternary tree with at least n!

1When logn appears as a factor within asymptotic big-O notation, the base of the logarithm does not matter
provided it is a constant. This is because loga n = logb n/ logb a. Thus, changing the base only alters the constant
factor.
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leaves. Any such tree must have Ω(log3(n!)) height. Using Stirling’s approximation for n!,
this solves to Ω(n log n) height. (For further details, see the algorithms book by Cormen,
Leiserson, Rivest, and Stein.)

We will give an Ω(n log h) lower bound for the convex hull problem. In fact, we will give an
Ω(n log h) lower bound on the following simpler decision problem, whose output is either yes
or no.

Convex Hull Size Verification Problem (CHSV): Given a point set P and integer h,
does the convex hull of P have h distinct vertices?

Clearly if this takes Ω(n log h) time, then computing the hull must take at least as long.
As with sorting, we will assume that the computation is described in the form of a decision
tree. The sorts of decisions that a typical convex hull algorithm will make will likely involve
orientation primitives. Let’s be even more general, by assuming that the algorithm is allowed
to compute any algebraic function of the input coordinates. (This will certainly be powerful
enough to include all the convex hull algorithms we have discussed.) The result is called an
algebraic decision tree.

The input to the CHSV problem is a sequence of 2n = N real numbers. We can think of these
numbers as forming a vector in real N -dimensional space, that is, (z1, z2, . . . , zN ) = ~z ∈ RN ,
which we will call a configuration. Each node branches based on the sign of some function of
the input coordinates. For example, we could implement the conditional zi < zj by checking
whether the function (zj − zi) is positive. More relevant to convex hull computations, we can
express an orientation test as the sign of the determinant of a matrix whose entries are the
six coordinates of the three points involved. The determinant of a matrix can be expressed
as a polynomial function of the matrices entries. Such a function is called algebraic. We
assume that each node of the decision tree branch three ways, depending on the sign of a
given multivariate algebraic formula of degree at most d, where d is any fixed constant. For
example, we could express the orientation test involving points p1 = (z1, z2), p2 = (z3, z4),
and p3 = (z5, z6) as an algebraic function of degree two as follows:

det

 1 z1 z2
1 z3 z4
1 z5 z6

 = (z3z6 − z5z4)− (z1z6 − z5z2) + (z1z4 − z3z2).

For each input vector ~z to the CHSV problem, the answer is either “yes” or “no”. The set
of all “yes” points is just a subset of points Y ⊂ RN , that is a region in this space. Given an
arbitrary input ~z the purpose of the decision tree is to tell us whether this point is in Y or
not. This is done by walking down the tree, evaluating the functions on ~z and following the
appropriate branches until arriving at a leaf, which is either labeled “yes” (meaning ~z ∈ Y )
or “no”. An abstract example (not for the convex hull problem) of a region of configuration
space and a possible algebraic decision tree (of degree 1) is shown in the following figure. (We
have simplified it by making it a binary tree.) In this case the input is just a pair of real
numbers.

We say that two points ~u,~v ∈ Y are in the same connected component of Y if there is a
path in RN from ~u to ~v such that all the points along the path are in the set Y . (There
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Fig. 5: The geometric interpretation of an algebraic decision tree.

are two connected components in the figure.) We will make use of the following fundamental
result on algebraic decision trees, due to Ben-Or. Intuitively, it states that if your set has M
connected components, then there must be at least M leaves in any decision tree for the set,
and the tree must have height at least the logarithm of the number of leaves.

Theorem: Let Y ∈ RN be any set and let T be any d-th order algebraic decision tree that
determines membership in W . If W has M disjoint connected components, then T must
have height at least Ω((logM)−N).

We will begin our proof with a simpler problem.

Multiset Size Verification Problem (MSV): Given a multiset of n real numbers and an
integer k, confirm that the multiset has exactly k distinct elements.

Lemma: The MSV problem requires Ω(n log k) steps in the worst case in the d-th order
algebraic decision tree

Proof: In terms of points in Rn, the set of points for which the answer is “yes” is

Y = {(z1, z2, . . . , zn) ∈ Rn : |{z1, z2, . . . , zn}| = k}.

It suffices to show that there are at least k!kn−k different connected components in this
set, because by Ben-Or’s result it would follow that the time to test membership in Y
would be

Ω(log(k!kn−k)− n) = Ω(k log k + (n− k) log k − n) = Ω(n log k).

Consider the all the tuples (z1, . . . , zn) with z1, . . . zk set to the distinct integers from 1
to k, and zk+1 . . . zn each set to an arbitrary integer in the same range. Clearly there are
k! ways to select the first k elements and kn−k ways to select the remaining elements.
Each such tuple has exactly k distinct items, but it is not hard to see that if we attempt
to continuously modify one of these tuples to equal another one, we must change the
number of distinct elements, implying that each of these tuples is in a different connected
component of Y .
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To finish the lower bound proof, we argue that any instance of MSV can be reduced to the
convex hull size verification problem (CHSV). Thus any lower bound for MSV problem applies
to CHSV as well.

Theorem: The CHSV problem requires Ω(n log h) time to solve.

Proof: Let Z = (z1, . . . , zn) and k be an instance of the MSV problem. We create a point
set {p1, . . . , pn} in the plane where pi = (zi, z

2
i ), and set h = k. (Observe that the points

lie on a parabola, so that all the points are on the convex hull.) Now, if the multiset
Z has exactly k distinct elements, then there are exactly h = k points in the point set
(since the others are all duplicates of these) and so there are exactly h points on the
hull. Conversely, if there are h points on the convex hull, then there were exactly h = k
distinct numbers in the multiset to begin with in Z.

Thus, we cannot solve CHSV any faster than Ω(n log h) time, for otherwise we could
solve MSV in the same time.

The proof is rather unsatisfying, because it relies on the fact that there are many duplicate
points. You might wonder, does the lower bound still hold if there are no duplicates? Kirk-
patric and Seidel actually prove a stronger (but harder) result that the Ω(n log h) lower bound
holds even you assume that the points are distinct.
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