
CMSC 754 Dave Mount

CMSC 754: Lecture 6
Halfplane Intersection and Point-Line Duality

Reading: Chapter 4 in the 4M’s, with some elements from Sections 8.2 and 11.4.

Halfplane Intersection: Today we begin studying another fundamental topic in geometric com-
puting and convexity. Recall that any line in the plane splits the plane into two regions, one
lying on either side of the line. Each such region is called a halfplane. We say that a halfplane
is either closed or open depending, respectively, on whether or not it contains the line. Unless
otherwise stated, we will assume that halfplanes are closed.

In the halfplane intersection problem, we are given a collection of n halfplanesH = {h1, . . . , hn},
and the objective is to compute their intersection. It is easy to see that the intersection of
halfspaces is a convex polygon (see Fig. 1(a)), but this polygon may be unbounded (see
Fig. 1(b)) or even empty (see Fig. 1(c)).

unbounded empty

(a) (b) (c)

Fig. 1: Halfplane intersection.

Clearly, the number of sides of the resulting polygon is at most n, but may be smaller since
some halfspaces may not contribute to the final shape.

Halfspace Intersection: In d-dimensional space the corresponding notion is a halfspace, which
is the set of points lying to one side of a (d− 1)-dimensional hyperplane. The intersection of
halfspaces is a convex polytope. The resulting polytope will have at most n facets (at most
one per halfspace), but (surprisingly) the overall complexity can be much higher.

A famous result, called McMullen’s Upper-Bound Theorem states that a polytope with n
facets in dimension d can have up to O(nbd/2c) vertices. (In dimensions 2 and 3, this is linear
in the number of halfspaces, but even in dimension 4 the number of vertices can jump to
O(n2).) Obtaining such a high number of vertices takes some care, but the bound is tight.
There is a famous class of polytopes, called the cyclic polytopes, that achieve this bound.
Symmetrically, the convex hull of n points in dimension d defines a convex polytope that can
have O(nbd/2c) facets, and this bound is also tight.

Representing Lines and Hyperplanes: (Digression) While we will usually treat geometric ob-
jects rather abstractly, it may be useful to explore a bit regarding how lines, halfspaces, and
their higher dimensional counterparts are represented. These topics would be covered in a
more complete course on projective geometry or convexity.
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Explicit Representation: If we think of a line as a linear function of the variable x, we
can express any (nonvertical) line by the equation y = ax+ b, where a is the slope and
b is the y-intercept.

In dimension d, we can think of the dth coordinate as being special, and we will make
the convention of referring to the d-th coordinate axis as pointing vertically upwards.
We can express any “nonvertical” (d − 1)-dimensional hyperplane by the set of points
(x1, . . . , xd), where xd =

∑d−1
i=1 aixi + b, thus xd is expressed “explicitly” as a linear

function of the first d− 1 coordinates.

The associated halfspaces arise replacing “=” with an inequality, e.g., the upper halfplane
is the set (x, y) such that y ≥ ax+ b, and the lower halfplane is defined analogously.

Implicit Representation: The above representation has the shortcoming that it cannot
represent vertical objects. A more general approach (which works for both hyperplanes
and curved surfaces) is to express the object implicitly as the zero-set of some function
of the coordinates. In the case of a line in the plane, we can represent the line as the set
of points (x, y) that satisfy the linear function f(x, y) = 0, where f(x, y) = ax+ by + c,
for scalars a, b, and c. The corresponding halfplanes are just the sets of points such that
f(x, y) ≥ 0 and f(x, y) ≤ 0.

This has the advantage that it can represent any line in the Euclidean plane, but the
representation is not unique. For example, the line described by 5x− 3y = 2 is the same
as the line described by 10x − 6y = 4, or any scalar multiple thereof. We could apply
some normalization to overcome this, for example by requiring that c = 1 or a2 + b2 = 1.

Parametric Representation: The above representations describe (d− 1)-dimensional hy-
perplanes in d-dimensional space. What if you want to represent a line, or more generally,
a flat object some dimension k < d − 1? We can represent such an object as the affine
span of a set of points. For example, to represent a line in 3-dimensional space, we can
given two points p and q on the line, and then any point on this line can be expressed as
an affine combination (1− α)p+ αq, for α ∈ R. This is called the parametric represen-
tation, since each point on the object is identified through the value of the parameter α.
In general, we can represent any k-dimensional affine subspace (or k-flat) parametrically
as the affine combination of k + 1 points, that is,

∑k+1
i=1 αipi, where

∑k+1
i=1 αi = 1. We

can think of the function as being generated by k of the parameters, say α1 through αk,
and αk+1 is determined by the constraint that the α values sum to 1.

Divide-and-Conquer Algorithm: Returning to the halfplane intersection problem, recall that
we are given a set H = {h1, . . . , hn} of halplanes and wish to compute their intersection. Here
is a simple divide-and-conquer algorithm.

(1) If n = 1, then just return this halfplane as the answer.

(2) Otherwise, partition H into subsets H1 and H2, each of size roughly n/2.

(3) Compute the intersections K1 =
⋂

h∈H1
h and K2 =

⋂
h∈H2

h recursively.

(4) If either either K1 or K2 is empty, return the empty set. Otherwise, compute the
intersection of the convex polygons K1 and K2 (by the procedure described below).
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If we let I(n) denote the time needed to intersect two convex polygons, each with at most n
vertices, we obtain the following recurrence for the overall running time:

T (n) =

{
1 if n = 1,
2T (n/2) + I(n) if n > 1,

We will show below that I(n) ≤ cn, for some constant c. It follows by standard results
(consult the Master Theorem in CLRS) that T (n) is O(n log n).

Intersecting Two Convex Polygons: The only remaining task is the process of intersecting two
convex polygons, K1 and K2 (see Fig. 2(a)). Note that these are somewhat special convex
polygons because they may be empty or unbounded.

We can compute the intersection by a left-to-right plane sweep in O(n) time (see Fig. 2(b)).
We begin by breaking the boundaries of the convex polygons into their upper and lower chains.
(This can be done in O(n) time.) By convexity, the sweep line intersects the boundary of
each convex polygon Ki in at most two points, one for the upper chain and one for the lower
chain. Hence, the sweep-line status contains at most four points. This implies that updates to
the sweep-line status can be performed in O(1) time. Also, we need keep track of a constant
number of events at any time, namely the right endpoints of the current segments in the
sweep-line status, and the intersections between consecutive pairs of segments. Thus, each
step of the plane-sweep process can be performed in O(1) time.

K2

K1

K = K1 ∩K2

K2

K1

K = K1 ∩K2

`

(a) (b)

Fig. 2: Intersecting two convex polygons by plane sweep.

The total number of events is equal to the total number vertices, which is n, and the total
number of intersection points. It is an easy exercise (which we leave to you) to prove that two
convex polygons with a total of n sides can intersect at most O(n) times. Thus, the overall
running time is O(n).

Lower Envelopes and Duality: Let’s next consider a variant of the halfplane intersection prob-
lem. Given any set of nonvertical lines L = {`1, `2, . . . , `n} in the plane. Each line defines two
natural halfplanes, and upper and lower halfplane. The intersection of all the lower halfplanes
is called the lower envelope of L and the upper envelope is defined analogously (see Fig. 3).
Let’s assume that each line `i is given explicitly as y = aix− bi.
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upper envelope

lower envelope

Fig. 3: Lower and upper envelopes.

The lower envelope problem is a restriction of the halfplane intersection problem, but it an
interesting restriction. Notice that any halfplane intersection problem that does not involve
any vertical lines can be rephrased as the intersection of two envelopes, a lower envelope
defined by the lower halfplanes and an upper envelope defined by the upward halfplanes.

We will see that solving the lower envelope problem is very similar (in fact, essentially the
same as) solving the upper convex hull problem. Indeed, they are so similar that exactly the
same algorithm will solve both problems, without changing even a single character of code!
All that changes is the way in which you interpret the inputs and the outputs.

Lines, Points, and Incidences: In order to motivate duality, let us discuss the representation
of lines in the plane. Each line can be represented in a number of ways, but for now, let us
assume the representation y = ax− b, for some scalar values a and b. (Why −b rather than
+b? The distinction is unimportant, but it will simplify some of the notation defined below.)
We cannot represent vertical lines in this way, and for now we will just ignore them.

Therefore, in order to describe a line in the plane, you need only give its two coefficients (a, b).
Thus, lines in the plane can be thought of as points in a new 2-dimensional space, in which
the coordinate axes are labeled (a, b), rather than (x, y). For example, the line ` : y = 2x+ 1
corresponds to the point (2,−1) in this space, which we denote by `∗. Conversely, each point
p = (a, b) in this space of “lines” corresponds to a nonvertical line, y = ax− b in the original
plane, which we denote by p∗. We will call the original (x, y)-plane the primal plane, and the
new (a, b)-plane the dual plane.

This insight would not be of much use unless we could say something about how geometric
relationships in one space relate to the other. The connection between the two involves
incidences between points and line.

Primal Relation Dual Relation

Two (nonparallel) lines meet in a point Two points join to form a line
A point may lie above/below/on a line A line may pass above/below/through a point
Three points may be collinear Three lines may pass through the same point

We’ll show that these relationships are preserved by duality. For example, consider the two
lines `1 : y = 2x+ 1 and the line `2 : y = −x

2 + 6 (see Fig. 4(a)). These two lines intersect at
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the point p = (2, 5). The duals of these two lines are `∗1 = (2,−1) and `∗2 =
(
−1

2 ,−6
)
. The

line in the (a, b) dual plane passing through these two points is easily verified to be b = 2a−5.
Observe that this is exactly the dual of the point p (see Fig. 4(b)). (As an exercise, prove
this for two general lines.)

`1 : y = 2x + 1

`2 : y = −x
2 + 6

p = (2, 5)

x

y

`∗2 =
(
−1
2,−6

)

a

b

`∗1 = (2,−1)

p∗ : b = 2a− 5

(a) (b)

Primal Dual

Fig. 4: The primal and dual planes.

Point-Line Duality: Let us explore this dual transformation more formally. Duality (or more
specifically point-line duality) is a transformation that maps points in the plane to lines and
lines to point. (More generally, it maps points in d-space to hyperplanes dimension d.) We
denote this transformation using a asterisk (∗) as a superscript. Thus, given point p and line
` in the primal plane we define `∗ and p∗ to be a point and line, respectively, in the dual plane
defined as follows.1

` : y = `ax− `b ⇒ `∗ = (`a, `b)
p = (px, py) ⇒ p∗ : b = pxa− py.

It is convenient to define the dual transformation so that it is its own inverse (that is, it is
an involution). In particular, it maps points in the dual plane to lines in the primal, and
vice versa. For example, given a point p = (pa, pb) in the dual plane, its dual is the line
y = pax− pb in the primal plane, and is denoted by p∗. It follows that p∗∗ = p and `∗∗ = `.

Properties of Point-Line Duality: Duality has a number of interesting properties, each of which
is easy to verify by substituting the definition and a little algebra.

Self Inverse: p∗∗ = p.

Order reversing: Point p is above/on/below line ` in the primal plane if and only if line p∗

is below/on/above point `∗ in the dual plane, respectively (see Fig. 5).

Intersection preserving: Lines `1 and `2 intersect at point p if and only if the dual line p∗

passes through points `∗1 and `∗2.

1Duality can be generalized to higher dimensions as well. In Rd, let us identify the y axis with the d-th coordinate
vector, so that an arbitrary point can be written as p = (x1, . . . , xd−1, y) and a (d−1)-dimensional hyperplane can be
written as h : y =

∑d−1
i=1 aixi − b. The dual of this hyperplane is h∗ = (a1, . . . , ad−1, b) and the dual of the point p is

p∗ : b =
∑d−1

i=1 xiai−y. All the properties defined for point-line relationships generalize naturally to point-hyperplane
relationships, where notions of above and below are based on the assumption that the y (or b) axis is “vertical.”
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Collinearity/Coincidence: Three points are collinear in the primal plane if and only if
their dual lines intersect in a common point.

`1 : y = 2x + 1

`2 : y = −x
2 + 6

x

y

a

b

(a) (b)

Order reversing

p = (1, 4)

`∗2 =
(
−1
2,−6

)
`∗1 = (2,−1)

p∗ : b = a− 4
p is above `1 and below `2

p∗ is below `∗1 and above `∗2

Fig. 5: The order-reversing property.

The self inverse property was already established (essentially by definition). To verify the
order reversing property, consider any point p and any line `.

p is on or above ` ⇐⇒ py ≥ `apx − `b ⇐⇒ `b ≥ px`a − py ⇐⇒ p∗ is on or below `∗

(From this it should be apparent why we chose to negate the y-intercept when dualizing points
to lines.) The other two properties (intersection preservation and collinearity/coincidence are
direct consequences of the order reversing property.)

Convex Hulls and Envelopes: Let us return now to the question of the relationship between
convex hulls and the lower/upper envelopes of a collection of lines in the plane. The following
lemma demonstrates the, under the duality transformation, the convex hull problem is dually
equivalent to the problem of computing lower and upper envelopes.

upper envelope

lower envelope

p∗1

p∗1

p∗2

p∗4

p∗5

p∗3

p∗7

p∗7

p∗6

p1

p2
p6

p7
p4

p3
p5

upper hull

lower hull

(a) (b)

Fig. 6: Equivalence of hulls and envelopes.

Lemma: Let P be a set of points in the plane. The counterclockwise order of the points
along the upper (lower) convex hull of P (see Fig. 6(a)), is equal to the left-to-right order
of the sequence of lines on the lower (upper) envelope of the dual P ∗ (see Fig. 6(b)).
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Proof: We will prove the result just for the upper hull and lower envelope, since the other
case is symmetrical. For simplicity, let us assume that no three points are collinear.

Consider a pair of points pi and pj that are consecutive vertices on the upper convex
hull. This is equivalent to saying that all the other points of P lie beneath the line `ij
that passes through both of these points.

Consider the dual lines p∗i and p∗j . By the incidence preserving property, the dual point
`∗ij is the intersection point of these two lines. (By general position, we may assume that
the two points have different x-coordinates, and hence the lines have different slopes.
Therefore, they are not parallel, and the intersection point exists.)

By the order reversing property, all the dual lines of P ∗ pass above point `∗ij . This is
equivalent to saying the `∗ij lies on the lower envelope of P ∗.

To see how the order of points along the hulls are represented along the lower envelope,
observe that as we move counterclockwise along the upper hull (from right to left), the
slopes of the edges increase monotonically. Since the slope of a line in the primal plane
is the a-coordinate of the dual point, it follows that as we move counterclockwise along
the upper hull, we visit the lower envelope from left to right.

One rather cryptic feature of this proof is that, although the upper and lower hulls appear
to be connected, the upper and lower envelopes of a set of lines appears to consist of two
disconnected sets. To make sense of this, we should interpret the primal and dual planes from
the perspective of projective geometry, and think of the rightmost line of the lower envelope
as “wrapping around” to the leftmost line of the upper envelope, and vice versa. The places
where the two envelopes wraps around correspond to the vertical lines (having infinite slope)
passing through the left and right endpoints of the hull. (As an exercise, can you see which
is which?)

Primal/Dual Equivalencies: There are a number of computational problems that are defined
in terms of affine properties of point and line sets. These can be expressed either in primal
or in dual form. In many instances, it is easier to visualize the solution in the dual form. We
will discuss many of these later in the semester. For each of the following, can you determine
what the dual equivalent is?

• Given a set of points P , find the narrowest slab (that is, a pair of parallel lines) that
contains P . Define the width of the slab to be the vertical distance between its bounding
lines (see Fig. 7(a)).

• Given a convex polygon K, find the longest vertical line segment with one endpoint on
K’s upper hull and one on its lower hull (see Fig. 7(b)).

• Given a set of points P , find the triangle of smallest area determined by any three points
of P (see Fig. 7(c)). (If three points are collinear, then they define a degenerate triangle
of area 0.)
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(a) (b)

K

(c)

Fig. 7: sEquivalence of hulls and envelopes.
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