
CMSC 754 Dave Mount

CMSC 754: Lecture 7
Linear Programming

Reading: Chapter 4 in the 4M’s. The original algorithm was given in R. Seidel. Small-dimensional
linear programming and convex hulls made easy, Discrete and Computational Geometry, vol 6, 423–
434, 1991.

Linear Programming: One of the most important computational problems in science and engi-
neering is linear programming, or LP for short. LP is perhaps the simplest and best known
example of multi-dimensional constrained optimization problems. In constrained optimiza-
tion, the objective is to find a point in d-dimensional space that minimizes (or maximizes)
a given objective function, subject to satisfying a set of constraints on the set of allowable
solutions. LP is distinguished by the fact that both the constraints and objective function are
linear functions. In spite of this apparent limitation, linear programming is a very powerful
way of modeling optimization problems. Typically, linear programming is performed in spaces
of very high dimension (hundreds to thousands or more). There are, however, a number of
useful (and even surprising) applications of linear programming in low-dimensional spaces.

Formally, in linear programming we are given a set of linear inequalities, called constraints, in
real d-dimensional space Rd. Given a point (x1, . . . , xd) ∈ Rd, we can express such a constraint
as a1x1 + . . .+ adxd ≤ b, by specifying the coefficient ai and b. (Note that there is no loss of
generality in assuming that the inequality relation is ≤, since we can convert a ≥ relation to
this form by simply negating the coefficients on both sides.) Geometrically, each constraint
defines a closed halfspace in Rd. The intersection of these halfspaces intersection defines a
(possibly empty or possibly unbounded) polyhedron in Rd, called the feasible polytope1 (see
Fig. 1(a)).

(a)

feasible
polytope

feasible
polytope

c

optimal
vertex

(b)

Fig. 1: 2-dimensional linear programming.

We are also given a linear objective function, which is to be minimized or maximized subject
to the given constraints. We can express such as function as c1x1 + . . . + cdxd, by speci-
fying the coefficients ci. (Again, there is no essential difference between minimization and

1To some geometric purists this an abuse of terminology, since a polytope is often defined to be a closed, bounded
convex polyhedron, and feasible polyhedra need not be bounded.

Lecture 7 1 Spring 2020



CMSC 754 Dave Mount

maximization, since we can simply negate the coefficients to simulate the other.) We will
assume that the objective is to maximize the objective function. If we think of (c1, . . . , cd) as
a vector in Rd, the value of the objective function is just the projected length of the vector
(x1, . . . , xd) onto the direction defined by the vector c. It is not hard to see that (assuming
general position), if a solution exists, it will be achieved by a vertex of the feasible polytope,
called the optimal vertex (see Fig. 1(b)).

In general, a d-dimensional linear programming problem can be expressed as:

Maximize: c1x1 + c2x2 + · · ·+ cdxd
Subject to: a1,1x1 + · · ·+ a1,dxd ≤ b1

a2,1x1 + · · ·+ a2,dxd ≤ b2
...
an,1x1 + · · ·+ an,dxd ≤ bn,

where ai,j , ci, and bi are given real numbers. This can be also be expressed in matrix notation:

Maximize: cTx,
Subject to: Ax ≤ b.

where c and x are d-vectors, b is an n-vector and A is an n× d matrix. Note that c should be
a nonzero vector, and n should be at least as large as d and may generally be much larger.

There are three possible outcomes of a given LP problem:

Feasible: The optimal point exists (and assuming general position) is a unique vertex of the
feasible polytope (see Fig. 2(a)).

Infeasible: The feasible polytope is empty, and there is no solution (see Fig. 2(b)).

Unbounded: The feasible polytope is unbounded in the direction of the objective function,
and so no finite optimal solution exists (see Fig. 2(c)).

feasible
polytope

optimal

c c

vertex

c

optimum

(a) (b) (c)

feasible infeasible unbounded

Fig. 2: Possible outcomes of linear programming.

In our figures (in case we don’t provide arrows), we will assume the feasible polytope is the
intersection of upper halfspaces. Also, we will usually take the objective vector c to be a
vertical vector pointing downwards. (There is no loss of generality here, because we can
always rotate space so that c is parallel any direction we like.) In this setting, the problem is
just that of finding the lowest vertex (minimum y-coordinate) of the feasible polytope.

Lecture 7 2 Spring 2020



CMSC 754 Dave Mount

Linear Programming in High Dimensional Spaces: As mentioned earlier, typical instances
of linear programming may involve hundreds to thousands of constraints in very high dimen-
sional space. It can be proved that the combinatorial complexity (total number of faces of all
dimensions) of a polytope defined by n halfspaces can be as high as Ω(nbd/2c). In particular,
the number of vertices alone might be this high. Therefore, building a representation of the
entire feasible polytope is not an efficient approach (except perhaps in the plane).

The principal methods used for solving high-dimensional linear programming problems are
the simplex algorithm and various interior-point methods. The simplex algorithm works by
finding a vertex on the feasible polytope, then walking edge by edge downwards until reaching
a local minimum. (By convexity, any local minimum is the global minimum.) It has been
long known that there are instances where the simplex algorithm runs in exponential time,
but in practice it is quite efficient.

The question of whether linear programming is even solvable in polynomial time was unknown
until Khachiyan’s ellipsoid algorithm (late 70’s) and Karmarkar’s more practical interior-point
algorithm (mid 80’s). Both algorithms are polynomial in the total number of bits needed to
describe the input. This is called a weakly polynomial time algorithm. It is not known whether
there is a strongly polynomial time algorithm, that is, one whose running time is polynomial
in both n and d, irrespective of the number of bits used for the input coefficients. Indeed, like
P versus NP, this is recognized by some as one of the great unsolved problems of mathematics.

Solving LP in Spaces of Constant Dimension: There are a number of interesting optimiza-
tion problems that can be posed as a low-dimensional linear programming problem. This
means that the number of variables (the xi’s) is constant, but the number of constraints n
may be arbitrarily large.

The algorithms that we will discuss for linear programming are based on a simple method
called incremental construction. Incremental construction is among the most common design
techniques in computational geometry, and this is another important reason for studying the
linear programming problem.

(Deterministic) Incremental Algorithm: Recall our geometric formulation of the LP problem.
We are given n halfspaces {h1, . . . , hd} in Rd and an objective vector c, and we wish to compute
the vertex of the feasible polytope that is most extreme in direction c. Our incremental
approach will be based on starting with an initial solution to the LP problem for a small set
of constraints, and then we will successively add one new constraint and update the solution.

In order to get the process started, we need to assume (1) that the LP is bounded and (2) we
can find a set of d halfspaces that provide us with an initial feasible point. Getting to this
starting point is actually not trivial.2 For the sake of focusing on the main elements of the
algorithm, we will skip this part and just assume that the first d halfspaces define a bounded
feasible polytope (actually it will be a polyhedral cone). The the unique point where all d
bounding hyperplanes, h1, . . . , hd, intersect will be our initial feasible solution. We denote
this vertex as vd (see Fig. 3(a)).

We will then add halfspaces one by one, hd+1, hd+2, . . ., and with each addition we update
the current optimum vertex, if necessary. Let vi denote the optimal feasible vertex after

2Our textbook explains how to overcome these assumptions in O(n) additional time.

Lecture 7 3 Spring 2020



CMSC 754 Dave Mount

c

h1h2

v2
c

vi−1

vi?

hi

(a)

vi = vi−1

`i

(b) (c)

c

hi

Fig. 3: (a) Starting the incremental construction and (b) the proof that the new optimum lies on
`i.

the addition of {h1, h2, . . . , hi}. Notice that with each new constraint, the feasible polytope
generally becomes smaller, and hence the value of the objective function at optimum vertex
can only decrease. (In terms of our illustrations, the y-coordinate of the feasible vertex
increases.)

There are two cases that can arise when hi is added. In the first case, vi−1 lies within the
halfspace hi, and so it already satisfies this constraint (see Fig. 3(b)). If so, then it is easy to
see that the optimum vertex does not change, that is vi = vi−1.

In the second case vi−1 violates constraint hi. In this case we need to find a new optimum
vertex (see Fig. 4(c)). Let us consider this case in greater detail. The key observation
is presented in the following claim, which states that whenever the old optimum vertex is
infeasible, the new optimum vertex lies on the bounding hyperplane of the new constraint.

Lemma: If after the addition of constraint hi the LP is still feasible but the optimum vertex
changes, then the new optimum vertex lies on the hyperplane bounding hi.

Proof: Let `i denote the bounding hyperplane for hi. Let vi−1 denote the old optimum
vertex. Suppose towards contradiction that the new optimum vertex vi does not lie on
`i (see Fig. 3(c)). Consider the directed line segment vi−1vi. Observe first that as you
travel along this segment the value of the objective function decreases monotonically.
(This follows from the linearity of the objective function and the fact that vi−1 is no
longer feasible.) Also observe that, because it connects a point that is infeasible (lying
below `i) to one that is feasible (lying strictly above `i), this segment must cross `i.
Thus, the objective function is maximized at the crossing point itself, which lies on `i, a
contradiction.

Recursively Updating the Optimum Vertex: Using this observation, we can reduce the prob-
lem of finding the new optimum vertex to an LP problem in one lower dimension. Let us
consider an instance where the old optimum vertex vi−1 does not lie within hi (see Fig. 4(a)).
Let `i denote the hyperplane bounding hi. We first project the objective vector c onto
`i, letting c′ be the resulting vector (see Fig. 4(b)). Next, intersect each of the halfspaces
{h1, . . . , hi−1} with `i. Each intersection is a (d − 1)-dimensional halfspace that lies on `i.
Since `i is a (d−1)-dimensional hyperplane, we can project `i onto Rd−1 space (see Fig. 4(b)).

Lecture 7 4 Spring 2020



CMSC 754 Dave Mount

We will not discuss how this is done, but the process is a minor modification of Gauss elimi-
nation in linear algebra. We now have an instance of LP in Rd−1 involving i− 1 constraints.
We recursively solve this LP. The resulting optimum vertex vi is then projected back onto `i
and can now be viewed as a point in d-dimensional space. This is the new optimum point
that we desire.

vi−1

c
hi

vi
vi

(a) (b)

`i `i c′intersect with `i

c′

project onto Rd−1

Fig. 4: Incremental construction.

The recursion ends when we drop down to an LP in 1-dimensional space (see Fig. 4(b)). The
projected objective vector c′ is a vector pointing one way or the other on the real line. The
intersection of each halfspace with `i is a ray, which can be thought of as an interval on the
line that is bounded on one side and unbounded on the other. Computing the intersection of
a collection of intervals on a line can be done easily in linear time, that is, O(i − 1) time in
this case. (This interval is the heavy solid line in Fig. 4(b).) The new optimum is whichever
endpoint of this interval is extreme in the direction of c′. If the interval is empty, then the
feasible polytope is also empty, and we may terminate the algorithm immediately and report
that there is no solution. Because, by assumption, the original LP is bounded, it follows that
the (d− 1)-dimensional LP is also bounded.

Worst-Case Analysis: What is the running time of this algorithm? Ignoring the initial d halfs-
paces, there are n− d halfspace insertions performed. In step i, we may find that the current
optimum vertex is feasible. This takes O(d) time. The alternative is that we need to solve a
(d − 1)-dimensional LP with i − 1 constraints. It takes O(d(i − 1)) to intersect each of the
constraints with `i and O(d) time to project c onto `i. If we let Td(n) denote the time to run
this algorithm in dimension d with n constraints. In this case the time is O(di+Td−1(i− 1)).
Since there are two alternatives, the running time is the maximum of the two. Ignoring
constant factors, the running time can be expressed by the following recurrence formula:

Td(n) =

n∑
i=d+1

max
(
d, di+ Td−1(i− 1)

)
.

Since d is a constant, we can simplify this to:

Td(n) =
n∑

i=d+1

(
i+ Td−1(i− 1)

)
.

Lecture 7 5 Spring 2020



CMSC 754 Dave Mount

The basis case of the recurrence occurs when d = 1, and we just solve the interval intersection
problem described above in O(n) time by brute force. Thus, we have T1(n) = n. It is easy to
verify by induction 3 that this recurrence solves to Td(n) = O(nd), which is not very efficient.

Notice that this worst-case analysis is based on the rather pessimistic assumption that the
current vertex is always infeasible. Although there may exist insertion orders for which this
might happen, we might wonder whether we can arrange the insertion order so this worst
case does not occur. We’ll consider this alternative next.

Randomized Algorithm: Suppose that we apply the above algorithm, but we insert the halfs-
paces in random order (except for the first d, which need to be chosen to provide an initial
feasible vertex.) This is an example of a general class of algorithms called randomized incre-
mental algorithms. A description is given in the code block below.

Randomized Incremental d-Dimensional Linear Programming
Input: A set H = {h1, . . . , hn} of (d − 1)-dimensional halfspaces, such that the first d define an initial
feasible vertex vd, and the objective vector c.
Output: The optimum vertex v or an error status indicating that the LP is infeasible.

(1) If the dimension is 1, solve the LP by brute force in O(n) time.

(2) Let vd be the intersection point of the hyperplanes bounding h1, . . . , hd, which we assume define an
initial feasible vertex. Randomly permute the remaining halfspaces, and let 〈hd+1, . . . , hn〉 denote the
resulting sequence.

(3) For i = d+ 1 to n do:

(a) If (vi−1 ∈ hi) then vi ← vi−1.

(b) Otherwise, intersect {h1, . . . , hi−1} with the (d−1)-dimensional hyperplane `i that bounds hi and
project onto Rd−1. Let c′ be the projection of c onto `i and then onto Rd−1. Solve the resulting
(d− 1)-dimensional LP recursively.

(i) If the (d− 1)-dimensional LP is infeasible, terminate and report that the LP is infeasible.

(ii) Otherwise, let vi be the solution to the (d− 1)-dimensional LP.

(4) Return vn as the final solution.

What is the expected case running time of this randomized incremental algorithm? Note
that the expectation is over the random permutation of the insertion order. We make no
assumptions about the distribution of the input. (Thus, the analysis is in the worst-case with
respect to the input, but in the expected case with respect to random choices.)

The number of random permutations is (n − d)!, but it will simplify things to pretend that
we permute all the halfspaces, and so there are n! permutations. Each permutation has an
equal probability of 1/n! of occurring, and an associated running time. However, presenting
the analysis as sum of n! terms does not lead to something that we can easily simplify. We
will apply a technique called backwards analysis, which is quite useful.

3Suppose inductively that there exists a sufficiently large constant α such that Td(n) ≤ αnd. The basis case is
trivial. Assuming the induction hypothesis holds for dimension d− 1, we have

Td(n) =

n∑
i=d+1

(
i+ Td−1(i− 1)

)
≤

n∑
i=d+1

(
i+ α(i− 1)d−1) ≤

n∑
i=1

αnd−1 ≤ αnd.

Although this analysis is quite crude, it can be shown to be asymptotically tight.

Lecture 7 6 Spring 2020



CMSC 754 Dave Mount

Computing the Minimum (Optional): To motivate how backwards analysis works, let us con-
sider a much simpler example, namely the problem of computing the minimum. Suppose that
we are given a set S of n distinct numbers. We permute the numbers and inspect them one-
by-one. We maintain a variable that holds the smallest value seen so far. If we see a value
that is smaller than the current minimum, then we update the current smallest. Of course,
this takes O(n) time, but the question we will consider is, in expectation how many times
does the current smallest value change?

Below are three sequences that illustrate that the minimum may updated once (if the numbers
are given in increasing order), n times (if given in decreasing order). Observe that in the third
sequence, which is random, the minimum does not change very often at all.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 9 4 11 2 6 8 14 0 3 13 12 1 7 10

Let pi denote the probability that the minimum value changes on inspecting the ith number
of the random permutation. Thus, with probability pi the minimum changes (and we add 1
to the counter for the number of changes) and with probability 1 − pi it does not (and we
add 0 to the counter for the number of changes). The total expected number of changes is

C(n) =

n∑
i=1

(pi · 1 + (1− pi) · 0) =

n∑
i=1

pi.

It suffices to compute pi. We might be tempted to reason as follows. Let us consider a random
subset of the first i−1 values, and then consider all the possible choices for the ith value from
the remaining n− i+1 elements of S. However, this leads to a complicated analysis involving
conditional probabilities. (For example, if the minimum is among the first i − 1 elements,
pi = 0, but if not then it is surely positive.) Let us instead consider an alternative approach,
in which we work backwards. In particular, let us fix the first i values, and then consider the
probability the last value added to this set resulted in a change in the minimum.

To make this more formal, let Si be an arbitrary subset of i numbers from our initial set of
n. (In theory, the probability is conditional on the fact that the elements of Si represent the
first i elements to be chosen, but since the analysis will not depend on the particular choice
of Si, it follows that the probability that we compute will hold unconditionally.) Among
all the n! permutations that could have resulted in Si, each of the i! permutations of these
first i elements are equally likely to occur. For how many of these permutations does the
minimum change in the transition from Si−1 to Si? Clearly, the minimum changes only
for those sequences in which the smallest element of Si is the ith element itself. Since the
minimum item appears with equal probability in each of the i positions of a random sequence,
the probability that it appears last is exactly 1/i. Thus, pi = 1/i. From this we have

C(n) =

n∑
i=1

pi =

n∑
i=1

1

i
= lnn+O(1).

This summation
∑

i
1
i is the Harmonic series, and it is a well-known fact that it is nearly

equal to lnn. (See any text on probability theory.)

Lecture 7 7 Spring 2020



CMSC 754 Dave Mount

Note that by fixing Si, and considering the possible (random) transitions that lead from
Si−1 to Si, we avoided the need to consider any conditional probabilities. This is called a
backwards analysis because the analysis works by considering the possible random transitions
that brought us to Si from Si−1, as opposed to working forward from Si−1 to Si. Of course,
the probabilities are no different whether we consider the random sequence backwards rather
than forwards, so this is a perfectly accurate analysis. It’s arguably simpler and easier to
understand.

Backwards Analysis for Randomized LP: Let us apply this same approach to the analysis of
the running time of the randomized incremental linear programming algorithm. We will do the
analysis in d-dimensional space. Let Td(n) denote the expected running time of the algorithm
on a set of n halfspaces in dimension d. We will prove by induction that Td(n) ≤ γd! n, where
γ is some constant that does not depend on dimension. It will make the proof simpler if we
start by proving that Td(n) ≤ γdd! n, where γd does depend on dimension, and later we will
eliminate this dependence.

For d + 1 ≤ i ≤ n, let pi denote the probability that the insertion of the ith hyperplane in
the random order results in a change in the optimum vertex.

Case 1: With probability (1 − pi) there is no change. It takes us O(d) time to determine
that this is the case.

Case 2: With probability pi, there is a change to the optimum. First we project the objective
vector onto `i (which takes O(d) time), next we intersect the existing i − 1 halfspaces
with `i (which takes O(d(i− 1)) time). Together, these last two steps take O(di) time.
Finally we invoke a (d − 1)-dimensional LP on a set of i − 1 halfspaces in dimension
d− 1. By the induction hypothesis, the running time of this recursive call is Td−1(i− 1).

Combining the two cases, up to constant factors (which don’t depend on dimension), we have
a total expected running time of

Td(n) ≤
n∑

i=d+1

(
(1− pi)d+ pi

(
di+ Td−1(i)

))
≤

n∑
i=d+1

(
d+ pi

(
di+ Td−1(i)

))
.

It remains is to determine what pi is. To do this, we will apply the same backward-analysis
technique as above. Let Si denote an arbitrary subset consisting of i of the original halfspaces.
Again, it will simplify things to assume that all the i hyperplanes are being permuted (not
just the last i− d). Among all i! permutations of Si, in how many does the optimum vertex
change with the ith step? Let vi denote the optimum vertex for these i halfspaces. It is
important to note that vi depends only on the set Si and not on the order of their insertion.
(You might think about why this is important.)

Assuming general position, there are d halfspaces whose intersection defines vi. (For example,
in Fig. 5(a), we label these halfspaces as h4 and h7.)

• If none of these d halfspaces were the last to be inserted, then vi = vi−1, and there is no
change. (As is the case in Fig. 5(b), where h5 is the last to be inserted.)

Lecture 7 8 Spring 2020



CMSC 754 Dave Mount

• On the other hand, if any of them were the last to be inserted, then vi did not exist yet,
and hence the optimum must have changed as a result of this insertion. (As is the case
in Fig. 5(c), where h7 is the last to be inserted.)

c

(a)

vi

h5

h4

h7
h6

h3

h1

h3

h2
c

(b)

vi vi−1

h5

h4

h6

h3

h1

h3

h2
c

(c)

vi = vi−1

h4

h7
h6

h3

h1

h3

h2

h7

h5

Fig. 5: Backwards analysis for the randomized LP algorithm.

Thus, the optimum changes if and only if either one of the d defining halfspaces was the last
halfspace inserted. Since all of the i halfspaces are equally likely to be last, this happens with
probability d/i. Therefore, pi = d/i.

This probabilistic analysis has been conditioned on the assumption that Si was the subset of
halfspace seen so far, but since the final probability does not depend on any properties of Si
(just on d and i), the probabilistic analysis applies unconditionally to all subsets of size i.

Returning to our analysis, since pi = d/i, and applying the induction hypothesis that
Td−1(i) = γd−1(d− 1)! i, we have

Td(n) ≤
n∑

i=d+1

(
d+ pi

(
di+ Td−1(i)

))
≤

n∑
i=d+1

(
d+

d

i

(
di+ γd−1(d− 1)! i

))

≤
n∑

i=d+1

(d+ d2 + γd−1d!) ≤ (d+ d2 + γd−1d!)n.

To complete the proof, we just need to select γd so that the right hand side is at most γdd!.
To achieve this, it suffices to set

γd =
d+ d2

d!
+ γd−1.

Plugging this value into the above formula yields

Td(n) ≤ (d+ d2 + γd−1d!)n ≤
(
d+ d2

d!
+ γd−1

)
d! n ≤ γdd! n,

as desired.

Eliminating the Dependence on Dimension: As mentioned above, we don’t like the fact that
the “constant” γd changes with the dimension. To remedy this, note that because d! grows

Lecture 7 9 Spring 2020



CMSC 754 Dave Mount

so rapidly compared to either d or d2, it is easy to show that (d + d2)/d! ≤ 1/2d for almost
all sufficiently large values of d. Because the geometric series

∑∞
d=1 1/2d, converges, it follows

that there is a constant γ (independent of dimension) such that γd ≤ γ for all d. Thus, we
have that Td(n) ≤ O(d! n), where the constant factor hidden in the big-Oh does not depend
on dimension.

Concluding Remarks: In summary, we have presented a simple and elegant randomized incre-
mental algorithm for solving linear programming problems. The algorithm runs in O(n) time
in expectation. (Remember that expectation does not depend on the input, only on the ran-
dom choices.) Unfortunately, our assumption that the dimension d is a constant is crucial.
The factor d! grows so rapidly (and it seems to be an unavoidable part of the analysis) that
this algorithm is limited to fairly low dimensional spaces.

You might be disturbed by the fact that the algorithm is not deterministic, and that we have
only bounded the expected case running time. Might it not be the case that the algorithm
takes ridiculously long, degenerating to the O(nd) running time, on very rare occasions? The
answer is, of course, yes. In his original paper, Seidel proves that the probability that the
algorithm exceeds its running time by a factor b is O((1/c)bd!), for any fixed constant c. For
example, he shows that in 2-dimensional space, the probability that the algorithm takes more
than 10 times longer than its expected time is at most 0.0000000000065. You would have a
much higher probability be being struck by lightning twice in your lifetime!

Lecture 7 10 Spring 2020


