CMSC 754 Dave Mount

CMSC 754: Lecture 11
Voronoi Diagrams and Fortune’s Algorithm

Reading: Chapter 7 in the 4M’s. A nice applet illustrating the execution of this algorithm can be
found at http://www.raymondhill.net/voronoi/rhill-voronoi.html.

Voronoi Diagrams: Voronoi diagrams are among the most important structures in computational
geometry. Throughout, let

J 1/2
lp—qll = (Z(pi - %’)2)

i=1

denote the standard Euclidean distance between two points p, ¢ € R%. Let P = {p1,p2,...,pn}
be a set of points in R, which we call sites. Define Vp(p;), called the Voronoi cell, for p;, to
be the set of points ¢ in space that are closer to p; than to any other site, that is,

Ve(pi) = {g € R |Ipi —q| < |lpj — ql|,Vj # i},

When P is clear from context, we will omit it and refer to this simply as V(p;). Clearly, the
Voronoi cells of two distinct points of P are disjoint. The union of the closure of the Voronoi
cells defines a cell complex, which is called the Voronoi diagram of P, and is denoted Vor(P)

(see Fig. [1fa)).

Fig. 1: Voronoi diagram Vor(P) of a set of points.

The cells of the Voronoi diagram are (possibly unbounded) convex polyhedra. To see this,
observe that the set of points that are strictly closer to one site p; than to another site p; is
equal to the open halfspace whose bounding hyperplane is the perpendicular bisector between
pi and pj. Denote this halfspace h(p;,p;). It is easy to see that a point ¢ lies in V(p;) if and
only if ¢ lies within the intersection of h(p;, p;) for all j # i. In other words,

V(pi) = () ki, p;)
it

Lecture 11 1 Spring 2020

http://www.raymondhill.net/voronoi/rhill-voronoi.html

CMSC 754 Dave Mount

(see Fig. [1[b)). Since the intersection of convex objects is convex, V(p;) is a (possibly un-
bounded) convex polyhedron.

Voronoi diagrams have a huge number of important applications in science and engineer-
ing. These include answering nearest neighbor queries, computational morphology and shape
analysis, clustering and data mining, facility location, multi-dimensional interpolation.

Nearest neighbor queries: Given a point set P, we wish to preprocess P so that, given a
query point ¢, it is possible to quickly determine the closest point of P to ¢g. This can be
answered by first computing a Voronoi diagram and then locating the cell of the diagram
that contains ¢. (In the plane, this can be done by building the trapezoidal map of the
edges of the Voronoi diagram. Fach trapezoid lies within a single Voronoi cell, and can
be labeled with the generating point.)

Computational morphology and shape analysis: A useful structure in shape analysis
is called the medial axis. The medial axis of a shape (e.g., a simple polygon) is defined to
be the union of the center points of all locally maximal disks that are contained within
the shape (see Fig. [2]). If we generalize the notion of Voronoi diagram to allow sites
that are both points and line segments, then the medial axis of a simple polygon can be
extracted easily from the Voronoi diagram of these generalized sites.

(a) (b) (c)

Fig. 2: (a) A simple polygon, (b) its medial axis and a sample maximal disk, and (c) center-based
clustering (with cluster centers shown as black points).

Center-based Clustering: Given a set P of points, it is often desirable to represent the
union of a significantly smaller set of clusters. In center-based clustering, the clusters
are defined by a set C' of cluster centers (which may or may not be required to be chosen
from P). The cluster associated with a given center point ¢ € C' is just the subset of
points of P that are closer to ¢ than any other center, that is, the subset of P that lies
within ¢’s Voronoi cell (see Fig. [J[c)). (How the center points are selected is another
question.)

Neighbors and Interpolation: Given a set of measured height values over some geometric
terrain. Each point has (z,y) coordinates and a height value. We would like to inter-
polate the height value of some query point that is not one of our measured points. To
do so, we would like to interpolate its value from neighboring measured points. One
way to do this, called natural neighbor interpolation, is based on computing the Voronoi
neighbors of the query point, assuming that it has one of the original set of measured
points.

Lecture 11 2 Spring 2020

CMSC 754 Dave Mount

Properties of the Voronoi diagram: Here are some properties of the Voronoi diagrams in the
plane. These all have natural generalizations to higher dimensions.

Empty circle properties: Each point on an edge of the Voronoi diagram is equidistant
from its two nearest neighbors p; and p;. Thus, there is a circle centered at any such
point where p; and p; lie on this circle, and no other site is interior to the circle (see

Fig. [3(a)).

Fig. 3: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(p;), V(p;), and
V(pr) intersect, called a Voronoi vertez is equidistant from all sites (see Fig. (b)) Thus
it is the center of the circle passing through these sites, and this circle contains no other
sites in its interior. (In R, the vertex is defined by d 4 1 points and the hypersphere
centered at the vertex passing through these points is empty.)

Degree: Generally three points in the plane define a unique circle (generally, d + 1 points in
R?). If we make the general position assumption that no four sites are cocircular, then
each vertex of the Voronoi diagram is incident to three edges (generally, d + 1 facets).

Convex hull: A cell of the Voronoi diagram is unbounded if and only if the corresponding
site lies on the convex hull. (Observe that a site is on the convex hull if and only if it
is the closest point from some point at infinity, namely the point infinitely far along a
vector orthogonal to the supporting line through this vertex.) Thus, given a Voronoi
diagram, it is easy to extract the vertices of the convex hull in linear time.

Size: Letting n denote the number of sites, the Voronoi diagram with exactly n faces. It
follows from FEuler’s formulaﬂ that the number of Voronoi vertices is roughly 2n and
the number of edges is roughly 3n. (See the text for details. In higher dimensions the
diagram’s combinatorial complexity ranges from O(n) up to O(n/%/?21).)

Computing Voronoi Diagrams: There are a number of algorithms for computing the Voronoi
diagram of a set of n sites in the plane. Of course, there is a naive O(n?logn) time algorithm,
which operates by computing V(p;) by intersecting the n — 1 bisector halfplanes h(p;, p;), for
j # i. However, there are much more efficient ways, which run in O(nlogn) time. Since the

'Euler’s formula for planar graphs states that a planar graph with v vertices, e edges, and f faces satisfies
v —e+ f = 2. There are n faces, and since each vertex is of degree three, we have 3v = 2e, from which we infer that
v — (3/2)v +n = 2, implying that v = 2n — 4. A similar argument can be used to bound the number of edges.

Lecture 11 3 Spring 2020

CMSC 754 Dave Mount

convex hull can be extracted from the Voronoi diagram in O(n) time, it follows that this is
asymptotically optimal in the worst-case.

Historically, O(n?) algorithms for computing Voronoi diagrams were known for many years
(based on incremental constructions). When computational geometry came along, a more
complex, but asymptotically superior O(nlogn) algorithm was discovered. This algorithm
was based on divide-and-conquer. But it was rather complex, and somewhat difficult to
understand. Later, Steven Fortune discovered a plane sweep algorithm for the problem,
which provided a simpler O(nlogn) solution to the problem. It is his algorithm that we will
discuss. Somewhat later still, it was discovered that the incremental algorithm is actually
quite efficient, if it is run as a randomized incremental algorithm. We will discuss a variant of
this algorithm later when we talk about the dual structure, called the Delaunay triangulation.

Fortune’s Algorithm: Before discussing Fortune’s algorithm, it is interesting to consider why
this algorithm was not invented much earlier. In fact, it is quite a bit trickier than any plane
sweep algorithm we have seen so far. The key to any plane sweep algorithm is the ability
to discover all upcoming events in an efficient manner. For example, in the line segment
intersection algorithm we considered all pairs of line segments that were adjacent in the
sweep-line status, and inserted their intersection point in the queue of upcoming events. The
problem with the Voronoi diagram is that of predicting when and where the upcoming events
will occur.

To see the problem, suppose that you are designing a plane sweep algorithm. Behind the
sweep line you have constructed the Voronoi diagram based on the points that have been
encountered so far in the sweep. The difficulty is that a site that lies ahead of the sweep
line may generate a Voronoi vertex that lies behind the sweep line. How could the sweep
algorithm know of the existence of this vertex until it sees the site. But by the time it sees
the site, it is too late. It is these unanticipated events that make the design of a plane sweep
algorithm challenging (see Fig. .

unantcipated events

Fig. 4: Plane sweep for Voronoi diagrams. Note that the position of the indicated vertices depends
on sites that have not yet been encountered by the sweep line, and hence are unknown to the
algorithm. (Note that the sweep line moves from top to bottom.)

The Beach Line: The sweeping process will involve sweeping two different object. First, there
will be a horizontal sweep line, moving from top to bottom. We will also maintain an z-
monotonic curve called a beach line. (It is so named because it looks like waves rolling up
on a beach.) The beach line lags behind the sweep line in such a way that it is unaffected

Lecture 11 4 Spring 2020

CMSC 754 Dave Mount

by sites that have yet to be seen. Thus, there are no unanticipated events on the beach line.
The sweep-line status will be based on the manner in which the Voronoi edges intersect the
beach line, not the actual sweep line.

Let’s make these ideas more concrete. We subdivide the halfplane lying above the sweep line
into two regions: those points that are closer to some site p above the sweep line than they
are to the sweep line itself, and those points that are closer to the sweep line than any site
above the sweep line.

What are the geometric properties of the boundary between these two regions? The set of
points ¢ that are equidistant from the sweep line to their nearest site above the sweep line
is called the beach line. Observe that for any point ¢ above the beach line, we know that its
closest site cannot be affected by any site that lies below the sweep line. Hence, the portion
of the Voronoi diagram that lies above the beach line is “safe” in the sense that we have all
the information that we need in order to compute it (without knowing about which sites are
still to appear below the sweep line).

What does the beach line look like? Recall from your high-school geometry that the set of
points that are equidistant from a point (in this case a site) and a line (in this case the sweep
line) is a parabola (see Fig. [5f(a)). The parabola’s shape depends on the distance between p
and the line £. As the line moves further away, the parabola becomes “fatter” (see Fig. [5|(b)).
(In the extreme case when the line contains the site the parabola degenerates into a vertical
ray shooting up from the site.)

bisector for
p and /¢

Fig. 5: The beach line. Notice that only the portion of the Voronoi diagram that lies above the
beach line is computed. The sweep-line status maintains the intersection of the Voronoi diagram
with the beach line.

Thus, the beach line consists of the lower envelope of these parabolas, one for each site (see
Fig. (c)) Note that the parabola associated with some sites may be redundant in the sense
that they will not contribute to the beach line. Because the parabolas are xz-monotone, so is
the beach line. Also observe that the point where two arcs of the beach line intersect, which
we call a breakpoint, is equidistant from two sites and the sweep line, and hence must lie
on some Voronoi edge. In particular, if the beach line arcs corresponding to sites p; and p;
share a common breakpoint on the beach line, then this breakpoint lies on the Voronoi edge
between p; and p;. From this we have the following important characterization.

Lemma: The beach line is an z-monotone curve made up of parabolic arcs. The breakpoints
(that is, vertices) of the beach line lie on Voronoi edges of the final diagram.

Lecture 11 5 Spring 2020

CMSC 754 Dave Mount

Fortune’s algorithm consists of simulating the growth of the beach line as the sweep line
moves downward, and in particular tracing the paths of the breakpoints as they travel along
the edges of the Voronoi diagram. Of course, as the sweep line moves, the parabolas forming
the beach line change their shapes continuously. As with all plane-sweep algorithms, we will
maintain a sweep-line status and we are interested in simulating the discrete event points
where there is a “significant event”, that is, any event that changes the topological structure
of the Voronoi diagram or the beach line.

Sweep-Line Status: The algorithm maintains the current location (y-coordinate) of the
sweep line. It stores, in left-to-right order the sequence of sites that define the beach
line. (We will say more about this later.) Important: The algorithm does not store
the parabolic arcs of the beach line. They are shown solely for conceptual purposes.

Events: There are two types of events:

Site events: When the sweep line passes over a new site a new parabolic arc will be
inserted into the beach line.

Voronoi vertex events: (What our text calls circle events.) When the length of an
arc of the beach line shrinks to zero, the arc disappears and a new Voronoi vertex
will be created at this point.

The algorithm consists of processing these two types of events. As the Voronoi vertices are
being discovered by Voronoi vertex events, it will be an easy matter to update the diagram
as we go (assuming any reasonable representation of this planar cell complex), and so to link
the entire diagram together. Let us consider the two types of events that are encountered.

Site events: A site event is generated whenever the horizontal sweep line passes over a site p;.

As we mentioned before, at the instant that the sweep line touches the point, its associated
parabolic arc will degenerate to a vertical ray shooting up from the point to the current beach
line. As the sweep line proceeds downwards, this ray will widen into an arc along the beach
line. To process a site event we determine the arc of the sweep line that lies directly above
the new site. (Let us make the general position assumption that it does not fall immediately
below a vertex of the beach line.) Let p; denote the site generating this arc. We then split
this arc in two by inserting a new entry at this point in the sweep-line status. (Initially this
corresponds to a infinitesimally small arc along the beach line, but as the sweep line sweeps
on, this arc will grow wider. Thus, the entry for (...,p;,...) on the sweep-line status is
replaced by the triple (...,p;j,pi,pj,...) (see Fig. @
It is important to consider whether this is the only way that new arcs can be introduced into
the sweep line. In fact it is. We will not prove it, but a careful proof is given in the text. As
a consequence, it follows that the maximum number of arcs on the beach line can be at most
2n — 1, since each new point can result in creating one new arc, and splitting an existing arc,
for a net increase of two arcs per point (except the first). Note that a point may generally
contribute more than one arc to the beach line. (As an exercise you might consider what is
the maximum number of arcs a single site can contribute.)

The nice thing about site events is that they are all known in advance. Thus, the sites can
be presorted by the y-coordinates and inserted as a batch into the event priority queue.

Lecture 11 6 Spring 2020

CMSC 754 Dave Mount

Prior to event ZAt the event> After the event
o PiPE -
(c.pjpp---) i (---pjpipjpR -)
Dk Pk
opj op]
b P I D

Fig. 6: Site event.

Voronoi vertex events: In contrast to site events, Voronoi vertex events are generated dynami-
cally as the algorithm runs. As with the line segment intersection algorithm, the important
idea is that each such event is generated by objects that are adjacent on the beach line
(and thus, can be found efficiently). However, unlike the segment intersection where pairs of
consecutive segments generated events, here triples of points generate the events.

In particular, consider any three consecutive sites p;, pj, and p, whose arcs appear con-
secutively on the beach line from left to right (see Fig. (a). Further, suppose that the
circumcircle for these three sites lies at least partially below the current sweep line (meaning
that the Voronoi vertex has not yet been generated), and that this circumcircle contains no
points lying below the sweep line (meaning that no future point will block the creation of the
vertex).

Consider the moment at which the sweep line falls to a point where it is tangent to the lowest
point of this circle. At this instant the circumcenter of the circle is equidistant from all three
sites and from the sweep line. Thus all three parabolic arcs pass through this center point,
implying that the contribution of the arc from p; has disappeared from the beach line. In
terms of the Voronoi diagram, the bisectors (p;, p;) and (pj,pr) have met each other at the
Voronoi vertex, and a single bisector (p;, pr) remains. Thus, the triple of consecutive sites
Di, Pj, Pk on the sweep-line status is replaced with p;, py (see Fig. 7).

Prior to event At the event After the event
(- PR - -) (---pjpipk---)

Fig. 7: Voronoi vertex event.

Sweep-line algorithm: We can now present the algorithm in greater detail. The main structures
that we will maintain are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed so

Lecture 11 7 Spring 2020

CMSC 754 Dave Mount

far will be stored in any reasonable data structure for storing planar subdivisions, for
example, a doubly-connected edge list. There is one technical difficulty caused by the
fact that the diagram contains unbounded edges. This can be handled by enclosing
everything within a sufficiently large bounding box. (It should be large enough to contain
all the Voronoi vertices, but this is not that easy to compute in advance.) An alternative
is to create an imaginary Voronoi vertex “at infinity” and connect all the unbounded
edges to this imaginary vertex.

Beach line: The beach line consists of the sorted sequence of sites whose arcs form the beach
line. It is represented using a dictionary (e.g. a balanced binary tree or skip list). As
mentioned above, we do not explicitly store the parabolic arcs. They are just there for
the purposes of deriving the algorithm. Instead for each parabolic arc on the current
beach line, we store the site that gives rise to this arc.

The key search operation is that of locating the arc of the beach line that lies directly
above a newly discovered site. (As an exercise, before reading the next paragraph you
might think about how you would design a binary search to locate this arc, given that
you only have the sites, not the actual arcs.)

Between each consecutive pair of sites p; and p;, there is a breakpoint. Although the
breakpoint moves as a function of the sweep line, observe that it is possible to compute
the exact location of the breakpoint as a function of p;, p;, and the current y-coordinate
of the sweep line. In particular, the breakpoint is the center of a circle that passes
through p;, p; and is tangent to the sweep line. (Thus, as with beach lines, we do not
explicitly store breakpoints. Rather, we compute them only when we need them.) Once
the breakpoint is computed, we can then determine whether a newly added site is to its
left or right. Using the sorted ordering of the sites, we use this primitive comparison to
drive a binary search for the arc lying above the new site.

The important operations that we will have to support on the beach line are:

Search: Given the current y-coordinate of the sweep line and a new site p;, determine
the arc of the beach line lies immediately above p;. Let p; denote the site that
contributes this arc. Return a reference to this beach line entry.

Insert and split: Insert a new entry for p; within a given arc p; of the beach line (thus
effectively replacing the single arc (...,pj,...) with the triple (..., p;,pi,pj,...)-
Return a reference to the newly added beach line entry (for future use).

Delete: Given a reference to an entry p; on the beach line, delete this entry. This
replaces a triple (..., p;, pj, Dk, . ..) with the pair (..., pi, pk,...).

It is not difficult to modify a standard dictionary data structure to perform these oper-
ations in O(logn) time each.

Event queue: The event queue is a priority queue with the ability both to insert and delete
new events. Also the event with the largest y-coordinate can be extracted. For each site
we store its y-coordinate in the queue. All operations can be implemented in O(logn)
time assuming that the priority queue is stored as an ordered dictionary.

For each consecutive triple p;, p;j, pr on the beach line, we compute the circumcircle
of these points. (We’ll leave the messy algebraic details as an exercise, but this can
be done in O(1) time.) If the lower endpoint of the circle (the minimum y-coordinate

Lecture 11 8 Spring 2020

CMSC 754 Dave Mount

on the circle) lies below the sweep line, then we create a Voronoi vertex event whose
y-coordinate is the y-coordinate of the bottom endpoint of the circumcircle. We store
this in the priority queue. Each such event in the priority queue has a cross link back to
the triple of sites that generated it, and each consecutive triple of sites has a cross link
to the event that it generated in the priority queue.

The algorithm proceeds like any plane sweep algorithm. The algorithm starts by inserting
the topmost vertex into the sweep-line status. We extract an event, process it, and go on
to the next event. Each event may result in a modification of the Voronoi diagram and the
beach line, and may result in the creation or deletion of existing events.

Here is how the two types of events are handled in somewhat greater detail.

Site event: Let p; be the new site (see Fig. |§| above).

(1) Advance the sweep line so that it passes through p;. Apply the above search oper-
ation to determine the beach line arc that lies immediately above p;. Let p; be the
corresponding site.

(2) Applying the above insert-and-split operation, inserting a new entry for p;, thus
replacing (...,pj,...) with (..., p;,pi,pj,...).

(3) Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector
between p; and p;.

(4) Some old triples that involved p; may need to be deleted and some new triples
involving p; will be inserted, based on the change of neighbors on the beach line.
(The straightforward details are omitted.)

Note that the newly created beach-line triple p;, p;,p; does not generate an event
because it only involves two distinct sites.

Voronoi vertex event: Let p;, pj, and p; be the three sites that generated this event, from
left to right (see Fig. [7] above).

(1) Delete the entry for p; from the beach line status. (Thus eliminating its associated
arc.)

(2) Create a new vertex in the Voronoi diagram (at the circumcenter of {p;, pj, px}) and
join the two Voronoi edges for the bisectors (p;,p;), (pj, k) to this vertex.

(3) Create a new (dangling) edge for the bisector between p; and py.

(4) Delete any events that arose from triples involving the arc of p;, and generate new
events corresponding to consecutive triples involving p; and pg. (There are two of
them. The straightforward details are omitted.)

The analysis follows a typical analysis for plane sweep. Each event involves O(1) processing
time plus a constant number operations to the various data structures (the sweep line status
and the event queue). The size of the data structures is O(n), and each of these operations
takes O(logn) time. Thus the total time is O(nlogn), and the total space is O(n).

Lecture 11 9 Spring 2020

