
CMSC 754 Dave Mount

CMSC 754: Lecture 14
Line Arrangements: Basic Definitions and the Zone Theorem

Reading: Chapter 8 in the 4M’s.

Line Arrangements: We have studied a number of the most fundamental structures in computa-
tional geometry: convex hulls, Voronoi diagrams and Delaunay triangulations. These are all
defined over a finite set of points. As we saw earlier, points and lines in the plane are related
to each other through the dual transformation. In this lecture, we will studey a fundamental
structure defined for a finite set of lines, called a line arrangement.

Consider a finite set L of lines in the plane. These lines naturally subdivide the plane into
a cell complex, which is called the arrangement of L, and is denoted A(L) (see Fig. 1(a)).
The points where two lines intersect form the vertices of the complex, the segments between
two consecutive intersection points form its edges, and the polygonal regions between the
lines form the faces. Although an arrangement contains unbounded edges and faces, as we
did with Voronoi diagrams (from a purely topological perspective) it is possible to add a
vertex at infinity and attach all these edges to this vertex to form a proper planar graph (see
Fig. 1(b)). An arrangement can be represented using any standard data structure for cell
complexes, a DCEL for example.

face

edge

vertex

(a) (b)

Fig. 1: Arrangement of lines; (a) the basic elements of an arrangement and (b) adding a vertex at
infinity to form a proper planar graph.

As we shall see, arrangements have many applications in computational geometry. Through
the use of point-line duality, many of these applications involve sets of points. We will begin by
discussing the basic geometric and combinatorial properties of arrangements and an algorithm
for constructing them. Later we will discuss applications of arrangements to other problems
in computational geometry. Although we will not discuss it, line arrangements in R2 can be
generalized to hyperplane arrangements in Rd. In such a case the arrangement is a polyhedral
cell complex.

Combinatorial Properties: The combinatorial complexity of an arrangement is the total number
of vertices, edges, and faces in the arrangement. An arrangement is said to be simple if no
three lines intersect at a common point. Through our usual general position assumption that
no three lines intersect in a single point, it follows that we will be interested only in simple
arrangements. We will also assume that no two lines are parallel. The following lemma shows
that all of these quantities are Θ(n2) for simple planar line arrangements.

Lecture 14 1 Spring 2020



CMSC 754 Dave Mount

Lemma: Let A(L) be a simple arrangement of n lines L in the plan. Then:

(i) the number of vertices (not counting the vertex at infinity) inA(L) is
(
n
2

)
= 1

2(n2−n).

(ii) the number of edges in A(L) is n2

(iii) the number of faces in A(L) is
(
n
2

)
+ n + 1 = 1

2(n2 + n + 2).

Proof: The fact that the number of vertices is
(
n
2

)
is clear from the fact that (since no two

are parallel) each pair of lines intersects in a single point.

The number of edges follows from the fact that each line contains n lines. This is because
each line is cut by each of the other n− 1 lines (assuming no two parallel lines), which
splits the line into n edges.

The number of faces follows from Euler’s formula, v−e+f = 2. To form a cell complex,
recall that we added an additional vertex at infinity. Thus, we have v = 1 +

(
n
2

)
and

e = n2. Therefore, the number of faces is

f = 2− v + e = 2−
(
1 +

(
n
2

))
+ n2 = 2−

(
1 + n(n−1)

2

)
+ n2

= 1 + n2

2 + n
2 = 1 + n(n−1)

2 + n =
(
n
2

)
+ n + 1,

as desired.

By the way, this generalizes to higher dimensions as well. The combinatorial complexity of
an arrangement of n hyperplanes in Rd is Θ(nd). Thus, these structures are only practical in
spaces of relatively low dimension when n is not too large.

Incremental Construction: Arrangements are used for solving many problems in computational
geometry. But in order to use an arrangement, we first must be able to construct it.1 We
will present a simple incremental algorithm, which builds an arrangement by adding lines
one at a time. Unlike the other incremental algorithms we have seen so far, this one is not
randomized. Its worst-case asymptotic running time, which is O(n2), holds irrespective of the
insertion order. This is asymptotically optimal, since this is the size of the arrangement. The
algorithm will also require O(n2) space, since this is the amount of storage needed to store
the final result.

Let L = {`1, . . . , `n} denote the set of lines. We will add lines one by one and update the
arrangement after each insertion. We will show that the ith line can be inserted in O(i)
time (irrespective of the insertion order). Summing over i, this yields a total running time
proportional to

∑n
i=1 i = O(n2).

Suppose that the first i− 1 lines have already been inserted. Consider the insertion of `i. We
start by determining the leftmost (unbounded) face of the arrangement that contains this line.
Observe that at x = ∞, the lines are sorted from top to bottom in increasing order of their
slopes. In time O(i) we can determine where the slope of `i falls relative to the slopes of the
prior i− 1 lines, and this determines the leftmost face of the arrangement that contains this

1This is not quite accurate. For some applications, it suffices to perform a plane-sweep of the arrangement. If we
think of each line as an infinitely long line segment, the line segment intersection algorithm that was presented in
class leads to an O(n2 logn) time and O(n) space solution. There exists a special version of plane sweep for planar
line arrangements, called topological plane sweep, which runs in O(n2) time and O(n) space. In spite of its fancy
name, topological plane sweep is quite easy to implement.

Lecture 14 2 Spring 2020



CMSC 754 Dave Mount

line. (In fact, we could do this in O(log i) time by storing the slopes in an ordered dictionary,
but this would not improve our overall running time. By our assumption that no two lines
are parallel, there are no duplicate slopes.)

The newly inserted line cuts through a sequence of i − 1 edges and i faces of the existing
arrangement. In order to process the insertion, we need to determine which edges are cut by
`i, and then we split each such edge and update the DCEL for the arrangement accordingly.

In order to determine which edges are cut by `i, we “walk” this line through the current
arrangement, from one face to the next. Whenever we enter a face, we need to determine
through which edge `i exits this face. We answer the question by a very simple strategy. We
walk along the edges of the face, say in a counterclockwise direction until we find the exit
edge, that is, the other edge that `i intersects. We then jump to the face on the other side
of this edge and continue the trace with the neighboring face. This is illustrated in Fig. 2(a).
The DCEL data structure supports such local traversals in time linear in the number of
edges traversed. (You might wonder why we don’t generalize the trapezoidal map algorithm.
We could build a trapezoidal map of the arrangement and walk the new segment through a
sequence of trapezoids. It turns out that this would be just as efficient.)

`i

ZA(`i)

`i

(b)(a)

`i

(c)

left-bounding

right-bounding

Fig. 2: Adding the line `i to the arrangement; (a) traversing the arrangement and (b) the zone of
a line `i. (Note that only a portion of the zone is shown in the figure.)

Clearly, the time that it takes to perform the insertion is proportional to the total number
of edges that have been traversed in this tracing process. A naive argument says that we
encounter i− 1 lines, and hence pass through i faces (assuming general position). Since each
face is bounded by at most i lines, each facial traversal will take O(i) time, and this gives a
total O(i2), which is much higher than the O(i) time that we promised earlier. Why is this
wrong? It is based on bound of the total complexity of the faces traversed. To improve this,
we need to delve more deeply into a concept of a zone of an arrangement.

Zone Theorem: The most important combinatorial property of arrangements (which is critical
to their efficient construction) is a rather surprising result called the zone theorem. Given an
arrangement A of a set L of n lines, and given a line ` that is not in L, the zone of ` in A(L),
denoted ZA(`), is the set of faces of the arrangement that are intersected by ` (shaded in
Fig. 2(b)). For the purposes of the above construction, we are only interested in the edges of
the zone that lie below `i, but if we bound the total complexity of the zone, then this will be
an upper bound on the number of edges traversed in the above algorithm. The combinatorial
complexity of a zone (as argued above) is at most O(n2). The Zone theorem states that the
complexity is actually much smaller, only O(n).

Lecture 14 3 Spring 2020



CMSC 754 Dave Mount

Theorem: (Zone Theorem) Given an arrangement A(L) of n lines in the plane, and given
any line ` in the plane, the total number of edges in all the cells of the zone ZA(`) is at
most 6n.

As with many combinatorial proofs, the key is to organize matter so that the counting can
be done in an easy way. This is not trivial. We cannot count cell-by-cell, since some cells
have high complexity and some low. We also cannot count line-by-line, because some lines
contribute many edges to the zone and others just a few. The key in the proof is finding a
(clever!) way to add up the edges so that each line appears to induce only a constant number
of edges into the zone. (Note that our text counts zone edges a bit differently.)

Proof: The proof is based on a simple inductive argument. For the sake of illustration, let
us rotate the plane so that ` is horizontal. By general position, we may assume that
none of the lines of L are parallel to `. We split the edges of the zone into two groups,
those that bound some face from the left side and those that bound some face from
the right side. An edge of a face is said to be left bounding if the face lies in the right
halfplane of the line defining this edge, and a face is right bounding if the face lies in the
left halfplane of the line defining this edge (see Fig. 2(c)). We will show that there are
at most 3n left-bounding edges in the zone (highlighted in Fig. 3(a)), and by applying a
symmetrical argument to the right-bounding edges, we have a a total of 6n edges.

The proof is by induction on n. For the basis case, when n = 1, then there is exactly one
left-bounding edge in `’s zone, and 1 ≤ 3 = 3n. For the induction step, let us assume the
induction hypothesis is true for any set of n− 1 lines, and we will show that it holds for
an arrangement of n lines. Consider the rightmost line of the arrangement to intersect
`. Call this `1 (see Fig. 2(c)). Prior to its existence, the induction hypothesis implies
that there are at most 3(n − 1) left-bounding edges in the zone of the remaining n − 1
lines.

`
`1

(a) (b)

`1

ea

eb

(c)

` `

Fig. 3: Proof of the Zone Theorem.

Now, let us add `1 and see how many more left-bounding edges are generated. Because
`1 is leftmost, it intersects the rightmost face of the zone. Observe that all of the edges
of this face are left-bounding edges. By convexity, `1 intersects the boundary of this
face in two edges, denoted ea and eb, where ea is above `, and eb is below. Its insertion
creates a new left-bounding edge running along `1 between ea and eb, and it splits each

Lecture 14 4 Spring 2020



CMSC 754 Dave Mount

of the edges ea and eb into two new left-bounding edges. Thus, there is a net increase
by three edges, for a total of 3(n− 1) + 3 = 3n edges.

We assert that `1 cannot contribute any other left-bounding edges to the zone. This is
because the lines containing ea and eb block any possibility of this. Therefore, there are
at most 3n left bounding edges, as desired.

Lecture 14 5 Spring 2020


