
CMSC 754 Dave Mount

CMSC 754: Lecture 16
Well-Separated Pair Decompositions

Reading: This material is not covered in our text. My presentation is taken from the book
“Geometric Approximation Algorithms” by S. Har-Peled. The original paper on WSPDs is “A
Decomposition of Multidimensional Point Sets with Applications to k-Nearest-Neighbors and n-
Body Potential Fields,” by P. B. Callahan and S. Rao Kosaraju, J. ACM, 42, 67–90, 1995.

Approximation Algorithms in Computational Geometry: Although we have seen many ef-
ficient techniques for solving fundamental problems in computational geometry, there are
many problems for which the complexity of finding an exact solution is unacceptably high.
Geometric approximation arises as a useful alternative in such cases. Approximations arise in
a number of contexts. One is when solving a hard optimization problem. A famous example is
the Euclidean traveling salesman problem, in which the objective is to find a minimum length
path that visits each of n given points (see Fig. 1(a)). (This is an NP-hard problem, but there
exists a polynomial time algorithm that achieves an approximation factor of 1 + ε for any
ε > 0.) Another source arises when approximating geometric structures. For example, early
this semester we mentioned that the convex hull of n points in Rd could have combinatorial
complexity Ω(nbd/2c). Rather than computing the exact convex hull, it may be satisfactory to
compute a convex polytope, which has much lower complexity, and whose boundary is within
a small distance ε from the actual hull (see Fig. 1(b)).

(a) (b)

Fig. 1: Geometric approximations: (a) Euclidean traveling salesman, (b) approximate convex hull.

Another important motivations for geometric approximations is that geometric inputs are
typically the results of sensed measurements, which are subject to limited precision. There is
no good reason to solve a problem to a degree of accuracy that exceeds the precision of the
inputs themselves.

Motivation: The n-Body Problem: We begin our discussion of approximation algorithms in
geometry with a simple and powerful example. To motivate this example, consider an ap-
plication in physics involving the simulation of the motions of a large collection of bodies
(e.g., planets or stars) subject to their own mutual gravitational forces. In physics, such a
simulation is often called the n-body problem. Exact analytical solutions are known to exist
in only extremely small special cases. Even determining a good numerical solution is relative
costly. In order to determine the motion of a single object in the simulation, we need to know
the gravitational force induced by the other n− 1 bodies of the system. In order to compute
this force, it would seem that at a minimum we would need Ω(n) computations per point, for
a total of Ω(n2) total computations. The question is whether there is a way to do this faster?
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What we seek is a structure that allows us to encode the distance information of Ω(n2) pairs
in a structure of size only O(n). While this may seem to be an impossible task, a clever
approximate answer to this question was discovered by Greengard and Rokhlin in the mid
1980’s, and forms the basis of a technique called the fast multipole method1 (or FMM for
short). We will not discuss the FMM, since it would take us out of the way, but will instead
discuss the geometric structure that encodes much of the information that made the FMM
such a popular technique.

Well Separated Pairs: A set of n points in space defines a set of
(
n
2

)
= Θ(n2) distinct pairs.

To see how to encode this set approximately, let us return briefly to the n-body problem.
Suppose that we wish to determine the gravitational effect of a large number of stars in a one
galaxy on the stars of distant galaxy. Assuming that the two galaxies are far enough away
from each other relative to their respective sizes, the individual influences of the bodies in
each galaxy can be aggregated into a single physical force. If there are n1 and n2 points in
the respective galaxies, the interactions due to all n1 · n2 pairs can be well approximated by
a single interaction pair involving the centers of the two galaxies.

To make this more precise, assume that we are given an n-element point set P in Rd, and
a separation factor s > 0. We say that two disjoint sets of A and B are s-well separated if
the sets A and B can be enclosed within two Euclidean balls of radius r such that the closest
distance between these balls is at least sr (see Fig. 2).

r

r
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B

≥ sr

Fig. 2: A well separated pair with separation factor s.

Observe that if a pair of points is s-well separated, it is also s′-well separated for all s′ < s.
Of course, since any point lies within a (degenerate) ball of radius 0, it follows that a pair of
singleton sets, {{a}, {b}}, for a 6= b, is well-separated for any s > 0.

Well Separated Pair Decomposition: Okay, distant galaxies are well separated, but if you were
given an arbitrary set of n points in Rd (which may not be as nicely clustered as the stars in
galaxies) and a fixed separation factor s > 0, can you concisely approximate all

(
n
2

)
pairs? We

will show that such a decomposition exists, and its size is O(n). The decomposition is called
a well separated pair decomposition. Of course, we would expect the complexity to depend
on s and d as well. The constant factor hidden by the asymptotic notion grows as O(sd).

Let’s make this more formal. Given arbitrary sets A and B, define A⊗B to be the set of all

1As an indication of how important this algorithm is, it was listed among the top-10 algorithms of the 20th century,
along with quicksort, the fast Fourier transform, and the simplex algorithm for linear programming.
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distinct (unordered) pairs from these sets, that is

A⊗B = {{a, b} | a ∈ A, b ∈ B, a 6= b} .

Observe that A ⊗ A consists of all the
(
n
2

)
distinct pairs of A. Given a point set P and

separation factor s > 0, we define an s-well separated pair decomposition (s-WSPD) to be a
collection of pairs of subsets of P , denoted {{A1, B1}, {A2, B2}, . . . , {Am, Bm}}, such that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m

(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m

(3)
⋃m

i=1Ai ⊗Bi = P ⊗ P

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m

Conditions (1)–(3) assert we have a cover of all the unordered pairs of P , and (4) asserts
that the pairs are well separated. Although these conditions alone do not imply that every
unordered pair from P occurs in a unique pair Ai⊗Bi (that is, the cover of P ⊗P is actually
a partition), our construction will have this further property. An example is shown in Fig. 3.
(Although there appears to be some sort of hierarchical structure here, note that the pairs
are not properly nested within one another.)

28 pairs 12 well-separated pairs

Fig. 3: A point set and a well separated pair decomposition for separation s = 1.

Trivially, there exists a WSPD of size O(n2) by setting the {Ai, Bi} pairs to each of the
distinct pair singletons of P . Our goal is to show that, given an n-element point set P in Rd

and any s > 0, there exists a s-WSPD of size O(n) (where the constant depends on s and d).
Before doing this, we must make a brief digression to discuss the quadtree data structure, on
which our construction is based.

Quadtrees: A quadtree is a hierarchical subdivision of space into regions, called cells, that are
hypercubes. The decomposition begins by assuming that the points of P lie within a bounding
hypercube. For simplicity we may assume that P has been scaled and translated so it lies
within the unit hypercube [0, 1]d.

The initial cell, associated with the root of the tree, is the unit hypercube. The following
process is then repeated recursively. Consider any unprocessed cell and its associated node u
in the current tree. If this cell contains either zero or one point of P , then this is declared a
leaf node of the quadtree, and the subdivision process terminates for this cell. Otherwise, the
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cell is subdivided into 2d hypercubes whose side lengths are exactly half that of the original
hypercube. For each of these 2d cells we create a node of the tree, which is then made a
child of u in the quadtree. (The process is illustrated in Fig. 4. The points are shown in
Fig. 4(a), the node structure in Fig. 4(b), and the final tree in Fig. 4(c).) Quadtrees can be
used to store various types of data. Formally, the structure we have just described in called
a PR-quadtree (for “point-region quadtree”).
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Fig. 4: The quadtree for a set of eight points.

Although in practice, quadtrees as described above tend to be reasonably efficient in fairly
small dimensions, there are a number of important issues in their efficient implementation in
the worst case. The first is that a quadtree containing n points may have many more than
O(n) nodes. The reason is that, if a group of points are extremely close to one another relative
to their surroundings, there may be an arbitrarily long trivial path in the tree leading to this
cluster, in which only one of the 2d children of each node is an internal node (see Fig. 5(a)).

(a) (b)

compress

Fig. 5: Compressed quadtree: (a) The original quadtree, (b) after path compression.

This issue is easily remedied by a process called path compression. Every such trivial path
is compressed into a single link. This link is labeled with the coordinates of the smallest
quadtree box that contains the cluster (see Fig. 5(b)). The resulting data structure is called a
compressed quadtree. Observe that each internal node of the resulting tree separates at least
two points into separate subtrees. Thus, there can be no more than n− 1 internal nodes, and
hence the total number of nodes is O(n).

A second issue involves the efficient computation of the quadtree. It is well known that
the tree can be computed in time O(hn), where h is the height of the tree. However, even
for a compressed quadtree the tree height can be as high as n, which would imply an O(n2)
construction time. We will not discuss it here, but it can be shown that in any fixed dimension
it is possible to construct the quadtree of an n-element point set in O(n log n) time. (The
key is handling uneven splits efficiently. Such splits arise when one child contains almost all
of the points, and all the others contain only a small constant number.)
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The key facts that we will use about quadtrees below are:

(a) Given an n-element point set P in a space of fixed dimension d, a compressed quadtree
for P of size O(n) can be constructed in O(n log n) time.

(b) Each internal node has a constant number (2d) children.

(c) The cell associated with each node of the quadtree is a d-dimensional hypercube, and
as we descend from the parent to a child (in the uncompressed quadtree), the size (side
length) of the cells decreases by a factor of 2.

(d) The cells associated with any level of the tree (where tree levels are interpreted relative
to the uncompressed tree) are of the same size and all have pairwise disjoint interiors.

An important consequence stemming from (c) and (d) is the following lemma, which provides
an upper bound on the number of quadtree disjoint quadtree cells of size at least x that can
overlap a ball of radius r.

Packing Lemma: Consider a ball b of radius r in any fixed dimension d, and consider any
collection X of pairwise disjoint quadtree cells of side lengths at least x that overlap b.
Then

|X| ≤
(

1 +

⌈
2r

x

⌉)d
≤ O

(
max

(
2,

r

x

)d)
Proof: We may assume that all the cells of X are of side length exactly equal to x, since

making cells larger only reduces the number of overlapping cells (see Fig. 6(b)).

(a) (b)
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Fig. 6: Proof of the Packing Lemma.

By the nature of a quadtree decomposition, the cells of side length x form a hypercube
grid G of side length x. Consider a hypercube H of side length 2r that encloses b (see
Fig. 6). Clearly every cell of X overlaps this hypercube. Along each dimension, the
number of cells of G that can overlap an interval of side length 2r is at most 1 + d2r/xe.
Thus, the number of grid cubes of G that overlap H is at most (1 + d2r/xe)d. If 2r < x,
this quantity is at most 2d, and otherwise it is O((r/x)d).

For the construction of the WSPD, we need to make a small augmentation to the quadtree
structure. We wish to associate each node of the tree, both leaves and internal nodes, with a
point that lies within its cell (if such a point exists). Given a node u, we will call this point
u’s representative and denote this as rep(u). We do this recursively as follows. If u is a leaf
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node that contains a point p, then rep(u) = {p}. If u is a leaf node that contains no point,
then rep(u) = ∅. Otherwise, if u is an internal node, then it must have at least one child v
that is not an empty leaf. (If there are multiple nonempty children, we may select any one.)
Set rep(u) = rep(v).

Given a node u in the tree, let Pu denote the points that lie within the subtree rooted at
u. We will assume that each node u is associated with its level in the tree, denoted level(u).
Assuming that the original point set lies within a unit hypercube, the side lengths of the cells
are of the form 1/2i, for i ≥ 0. We define level(u) to be −log2 x, where x is the side length
of u’s cell. Thus, level(u) is just the depth of u in the (uncompressed) quadtree, where the
root has depth 0. The key feature of level is that level(u) ≤ level(v) holds if and only if the
sidelength of u’s cell at least as large as that of v’s cell.

We will treat leaf nodes differently from internal nodes. If a leaf node u contains no point
at all, then we may ignore it, since it cannot participate in any well-separated pair. If it
does contain a point, then we think of the leaf node conceptually as an infinitesimally small
quadtree cell that contains this point. We do this by defining level(u) = +∞ for such a node.
We will see later why this is useful.

Constructing a WSPD: We now have the tools needed to to show that, given an n-element
point set P in Rd and any s > 0, there exists a s-WSPD of size O(sdn), and furthermore,
this WSPD can be computed in time that is roughly proportional to its size. In particular,
the construction will take O(n log n + sdn) time. We will show that the final WSPD can be
encoded in O(sdn) total space. Under the assumption that s and d are fixed (independent of
n) then the space is O(n) and the construction time is O(n log n).

The construction operates as follows. Recall the conditions (1)–(4) given above for a WSPD.
We will maintain a collection of sets that satisfy properties (1) and (3), but in general they
may violate conditions (2) and (4), since they may not be disjoint and may not be well
separated. When the algorithm terminates, all the pairs will be well-separated, and this will
imply that they are disjoint. Each set {Ai, Bi} of the pair decomposition will be encoded as a
pair of nodes {u, v} in the quadtree. Implicitly, this pair represents the pairs Pu⊗Pv, that is,
the set of pairs generated from all the points descended from u and all the points descended
from v. This is particularly nice, because it implies that the total storage requirement is
proportional to the number of pairs in the decomposition.

(a) (b)
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Fig. 7: WSPD recursive decomposition step.
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The algorithm is based on a recursive subdivision process. Consider a pair of nodes {u, v}
that arise in the decomposition process. If either of the nodes is an empty leaf, then we
may ignore this pair. If both of the nodes are leaves, then they are clearly well-separated
(irrespective of the value of s), and we may output this pair. Otherwise, let us assume that
u’s cell is least as large as v’s. That is, u’s level number is not greater than v’s. (Recall that
a leaf node is treated as an infinitesimally small quadtree cell that contains the node’s point,
and its level is defined to be +∞. So if an internal node and a leaf node are compared, the
internal node is always deemed to have the larger cell.) Consider the two smallest Euclidean
balls of equal radius that enclose u’s cell and v’s cell (see Fig. 7(a)). If these balls are well
separated, then we can report {u, v} as (the encoding of) a well separated pair. Otherwise,
we subdivide u by considering its children, and apply the procedure recursively to the pairs
{ui, v}, for each child of ui of u (see Fig. 7(b)).

A more formal presentation of the algorithm is presented in the following code block. The
procedure is called ws-pairs(u, v, s), where u and v are the current nodes of a compressed
quadtree for the point set, and s is the separation factor. The procedure returns a set node
pairs, encoding the well separated pairs of the WSPD. The initial call is ws-pairs(u0, u0, s),
where u0 is the root of the compressed quadtree.

Construction of a Well Separated Pair Decomposition
ws-pairs(u, v, s) {

if (u and v are leaves and u = v) return;
if (rep(u) or rep(v) is empty) return ∅; // no pairs to report
else if (u and v are s-well separated) // (see remark below)

return {{u, v}}; // return the WSP {Pu, Pv}
else { // subdivide

if (level(u) > level(v)) swap u and v;// swap so that u’s cell is at least as large as v’s
Let u1, . . . , um denote the children of u;
return

⋃m
i=1 ws-pairs(ui, v, s); // recurse on children

}
}

How do we test whether two nodes u and v are s well separated? For each internal node,
consider the smallest Euclidean balls enclosing the associated quadtree cells. For each leaf
node, consider a degenerate ball of radius zero that contains the point. In O(1) time, we can
determine whether these balls are s well separated. Note that a pair of leaf cells will always
pass this test (since the radius is zero), so the algorithm will eventually terminate.

Remark: Due to its symmetry, this procedure will generally produce duplicate pairs {Pu, Pv}
and {Pv, Pu}. A simple disambiguation rule can be applied to eliminate this issue.

Analysis: How many pairs are generated by this recursive procedure? It will simplify our proof
to assume that the quadtree is not compressed (and yet it has size O(n)). This allows us to
assume that the children of each node all have cell sizes that are exactly half the size of their
parent’s cell. (We leave the general case as an exercise.)

From this assumption, it follows that whenever a call is made to the procedure ws-pairs(),
the sizes of the cells of the two nodes u and v differ by at most a factor of two (because we
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always split the larger of the two cells). It will also simplify the proof to assume that s ≥ 1
(if not, replace all occurrences of s below with max(s, 1)).

To evaluate the number of well separated pairs, we will count calls to the procedure ws-pairs().
We say that a call to ws-pairs is terminal if it does not make it to the final “else” clause. Each
terminal call generates at most one new well separated pair, and so it suffices to count the
number of terminal calls to ws-pairs. In order to do this, we will instead bound the number
of nonterminal calls. Each nonterminal call generates at most 2d recursive calls (and this is
the only way that terminal calls may arise). Thus, the total number of well separated pairs
is at most 2d times the number of nonterminal calls to ws-pairs.

To count the number of nonterminal calls to ws-pairs, we will apply a charging argument to
the nodes of the compressed quadtree. Each time we make it to the final “else” clause and
split the cell u, we assign a charge to the “unsplit” cell v. Recall that u is generally the larger
of the two, and thus the smaller node receives the charge. We assert that the total number of
charges assigned to any node v is O(sd). Because there are O(n) nodes in the quadtree, the
total number of nonterminal calls will be O(sdn), as desired. Thus, to complete the proof, it
suffices to establish this assertion about the charging scheme.

A charge is assessed to node v only if the call is nonterminal, which implies that u and v
are not s-well separated. Let x denote the side length of v’s cell and let rv = x

√
d/2 denote

the radius of the ball enclosing this cell. As mentioned earlier, because we are dealing with
an uncompressed quadtree, and the construction always splits the larger cell first, we may
assume that u’s cell has a side length of either x or 2x. Therefore, the ball enclosing u’s cell is
of radius ru ≤ 2rv. Since u and v are not well separated, it follows that the distance between
their enclosing balls is at most s ·max(ru, rv) ≤ 2srv = sx

√
d. The centers of their enclosing

balls are therefore within distance

rv + ru + sx
√
d ≤

(
1

2
+ 1 + s

)
x
√
d ≤ 3sx

√
d (since s ≥ 1),

which we denote by Rv (see Fig. 8(a)).

v

u
x

rv
Rv

≤ sx
√
d

bv

Fig. 8: WSPD analysis.

Let bv be a Euclidean ball centered at v’s cell of radius Rv. Summarizing the above discussion,
we know that the set of quadtree nodes u that can assess a charge to v have cell sizes of either
x or 2x and overlap bv. Clearly the cells of side length x are disjoint from one another and
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the cells of side length 2x are disjoint from one another. Thus, by the Packing Lemma, the
total number of nodes that can assess a charge to node v is at most C, where

C ≤
(

1 +

⌈
2Rv

x

⌉)d

+

(
1 +

⌈
2Rv

2x

⌉)d

≤ 2

(
1 +

⌈
2Rv

x

⌉)d

≤ 2

(
1 +

⌈
6sx
√
d

x

⌉)d

≤ 2(2 + 6s
√
d)d.

(In the last inequality, we used the fact that dze ≤ 1 + z.) Since the dimension d is assumed
to be a constant and s ≥ 1, this is O(sd).

Putting this all together, we recall that there are O(n) nodes in the compressed quadtree and
O(sd) charges assigned to any node of the tree, which implies that there are a total of O(sdn)
total nonterminal calls to ws-pairs. As observed earlier, the total number of well separated
pairs is larger by a factor of O(2d), which is just O(1) since d is a constant. Together with the
O(n log n) time to build the quadtree, this gives an overall running time of O((n log n) + sdn)
and O(sdn) total well separated pairs. In summary we have the following result.

Theorem: Given a point set P in Rd, and a fixed separation factor s ≥ 1, in O(n log n+sdn)
time it is possible to build an s-WSPD for P consisting of O(sdn) pairs.

As mentioned earlier, if 0 < s < 1, then replace s with max(s, 1). Next time we will consider
applications of WSPDs to solving a number of geometric approximation problems.
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