
CMSC 754 Dave Mount

CMSC 754: Lecture 17
Applications of WSPDs

Reading: This material is not covered in our text. The WSPD utility lemma is from M. Smid,
“The well-separated pair decomposition and its applications,” (2005).

Review: Recall that given a parameter s > 0, we say that two sets of A and B are s-well separated
if the sets can be enclosed within two spheres of radius r such that the closest distance
between these spheres is at least sr. Given a point set P and separation factor s > 0, recall
that an s-well separated pair decomposition (s-WSPD) is a collection of pairs of subsets of P
{{A1, B1}, {A2, B2}, . . . , {Am, Bm}} such that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m
(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m
(3)

⋃n
i=1Ai ⊗Bi = P ⊗ P

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m,

where A⊗B denotes the set of all unordered pairs from A and B.

Last time we showed that, given s ≥ 1, there exists an s-WSPD of size O(sdn), which can be
constructed in time O(n log n + sdn). (The algorithm works for any s > 0, and the sd term
is more accurately stated as max(1, s)d.)

Recall that the WSPD is represented as a set of unordered pairs of nodes of a compressed
quadtree decomposition of P . It is possible to associate each nonempty node u of the com-
pressed quadtree with a representative point, denoted rep(u), chosen from its descendants.
We will make use of this fact in some of our constructions below.

Today we discuss a number of applications of WSPDs. Many of the applications will make
use of the following handy technical lemma (see Fig. 1).

Lemma: (WSPD Utility Lemma) If the pair {Pu, Pv} is s-well separated and x, x′ ∈ Pu and
y, y′ ∈ Pv then:

(i) ‖x− x′‖ ≤ 2
s · ‖x− y‖

(ii) ‖x′ − y′‖ ≤
(
1 + 4

s

)
‖x− y‖

2r 2r

≥ sr
x

Pu Pv

y
x′ y′

Fig. 1: WSPD Utility Lemma.

Proof: Since the pair is s-well separated, we can enclose each of Pu and Pv in a ball of radius
r such that the minimum separation between these two balls is at least sr. It follows

Lecture 17 1 Spring 2020

CMSC 754 Dave Mount

that max(‖x− x′‖, ‖y − y′‖) ≤ 2r, and any pair from {x, x′} × {y, y′} is separated by a
distance of at least sr. Thus, we have

‖x− x′‖ ≤ 2r =
2r

sr
sr ≤ 2r

sr
‖x− y‖ =

2

s
‖x− y‖,

which proves (i). Also, through an application of the triangle inequality (‖a − c‖ ≤
‖a− b‖+ ‖b− c‖) and the fact that 2r ≤ 2

s‖x− y‖ we have

‖x′ − y′‖ ≤ ‖x′ − x‖+ ‖x− y‖+ ‖y − y′‖ ≤ 2r + ‖x− y‖+ 2r

≤ 2

s
‖x− y‖+ ‖x− y‖+

2

s
‖x− y‖ =

(
1 +

4

s

)
‖x− y‖,

which proves (ii).

Approximating the Diameter: The diameter of a point set is defined to be the maximum dis-
tance between any pair of points of the set. (For example, the points x and y in Fig. 2(a)
define the diameter.)

x

y
pv Pv

Pu

≥ sr

2r

2r

x

y

(a) (b)

pu

Fig. 2: Approximating the diameter.

The diameter can be computed exactly by brute force in O(n2) time. For points in the plane,
it is possible to compute the diameter1 in O(n log n) time. Generalizing this method to higher
dimensions results in an O(n2) running time, which is no better than brute force search.

Using the WSPD construction, we can easily compute an ε-approximation to the diameter of
a point set P in linear time. Given ε, we let s = 4/ε and construct an s-WSPD. As mentioned
above, each pair (Pu, Pv) in our WSPD construction consists of the points descended from
two nodes, u and v, in a compressed quadtree. Let pu = rep(u) and pv = rep(v) denote
the representative points associated with u and v, respectively. For every well separated pair
{Pu, Pv}, we compute the distance ‖pu − pv‖ between their representative, and output the
pair achieving the largest such distance.

To prove correctness, let x and y be the points of P that realize the diameter. Let {Pu, Pv}
be the well separated pair containing these points, and let pu and pv denote their respective

1This is nontrivial, but is not much harder than a homework exercise. In particular, observe that the diameter
points must lie on the convex hull. After computing the hull, it is possible to perform a rotating sweep that finds the
diameter.

Lecture 17 2 Spring 2020

CMSC 754 Dave Mount

representatives. By the WSPD Utility Lemma we have

‖x− y‖ ≤
(

1 +
4

s

)
‖pu − pv‖ = (1 + ε)‖pu − pv‖.

Since {x, y} is the diametrical pair, we have

‖x− y‖
1 + ε

≤ ‖pu − pv‖ ≤ ‖x− y‖,

which implies that the output pair {pu, pv} is an ε-approximation to the diameter. The
running time is dominated by the size of the WSPD, which is O(sdn) = O(n/εd). If we treat
ε as a constant, this is O(n).

Closest Pair (Exact!): The same sort of approach could be used to produce an ε-approximation
to the closest pair as well, but surprisingly, there is a much better solution. If we were to
generalize the above algorithm, we would first compute an s-WSPD for an appropriate value
of s, and for each well separated pair {Pu, Pv} we would compute the distance ‖pu − pv‖,
where pu = rep(u) and pv = rep(v), and return the smallest such distance. As before, we
would like to argue that (assuming s is chosen properly) this will yield an approximation to
the closest pair. It is rather surprising to note that, if s is chosen carefully, this approach
yields the exact closest pair, not just an approximation.

To see why, consider a point set P , let x and y be the closest pair of points and let pu and
pv be the representatives from their associated well separated pair. If it were the case that
x = pu and y = pv, then the representative-based distance would be exact. Suppose therefore
that either x 6= pu or y 6= pv. But wait! If the separation factor is high enough, this would
imply that either ‖x− pu‖ < ‖x− y‖ or ‖y − pv‖ < ‖x− y‖, either of which contradicts the
fact that x and y are the closest pair.

To make this more formal, let us assume that {x, y} is the closest pair and that s > 2. We
know that Pu and Pv lie within balls of radius r that are separated by a distance of at least
sr > 2r. If pu 6= x, then we have

‖pu − x‖ ≤ 2r < sr ≤ ‖x− y‖,

yielding a contradiction. Therefore pu = rep(u) = x. By a symmetrical argument pv =
rep(v) = y. Since the representative was chosen arbitrarily, it follows that the Pu = {x} and
Pv = {y}. Therefore, the closest representatives are in fact, the exact closest pair.

Since s can be chosen to be arbitrarily close to 2, the running time is O(n log n + 2dn) =
O(n log n), since we assume that d is a constant. Although this is not a real improvement
over our existing closest-pair algorithm, it is interesting to note that there is yet another way
to solve this problem.

Low-Stretch Spanners: Recall that a set P of n points in Rd defines a complete weighted graph,
called the Euclidean graph, in which each point is a vertex, and every pair of vertices is
connected by an edge whose weight is the Euclidean distance between these points. This graph
is dense, meaning that it has Θ(n2) edges. Intuitively, a spanner is a sparse graph (having only

Lecture 17 3 Spring 2020

CMSC 754 Dave Mount

O(n) edges) in which shortest paths are not significantly longer than the Euclidean distance
between points. Such a graph is called a (Euclidean) spanner.

More formally, suppose that we are given a set P in Rd and a parameter t ≥ 1, called the
stretch factor. A t-spanner is a weighted graph G whose vertex set is P and, given any pair
of points x, y ∈ P we have

‖x− y‖ ≤ δG(x, y) ≤ t · ‖x− y‖,

where δG(x, y) denotes the length of the shortest path between x and y in G.

In an earlier lecture, we showed that the Delaunay triangulation of P is an O(1)-spanner.
This was only really useful in the plane, since in dimension 3 and higher, the Delaunay
triangulation can have a quadratic number of edges. Here we consider the question of how
to produce a spanner in any space of constant dimension that achieves any desired stretch
factor t > 1. There are many different ways of building spanners. Here we will discuss a
straightforward method based on a WSPD of the point set.

WSPD-based Spanner Construction: Given the point set P and a (constant) stretch factor t,
the idea is to build an s-WSPD for P , where s is an appropriately chosen separation factor
(which will depend on t). We will then create one edge in the spanner from each well-separated
pair.

Given t, we set s = 4(t + 1)/(t − 1). (Later we will justify the mysterious choice.) For each
well-separated pair {Pu, Pv} associated with the nodes u and v of the quadtree, let pu = rep(u)
and let pv = rep(v). Add the undirected edge {pu, pv} to our graph. Let G be the resulting
undirected weighted graph (see Fig. 3). G will be the desired spanner. Clearly the number of
edges of G is equal to the number of well-separated pairs, which is O(sdn) = O(n), and it can
be built in the same O(n log n+ sdn) = O(n log n) running time as the WSPD construction.

Pu
Pv

rep(u)
rep(v)

rep(u) rep(v)

WSPD

(a)

Spanner

(b)

Fig. 3: A WSPD and its associated spanner.

Correctness: To establish the correctness of our spanner construction algorithm, it suffices to
show that for all pairs x, y ∈ P , we have

‖x− y‖ ≤ δG(x, y) ≤ t · ‖x− y‖.

Lecture 17 4 Spring 2020

CMSC 754 Dave Mount

Clearly, the first inequality holds trivially, because (by the triangle inequality) no path in
any graph can be shorter than the distance between the two points. To prove the second
inequality, we apply an induction based on the number of edges of the shortest path in the
spanner.

For the basis case, observe that, if x and y are joined by an edge in G, then clearly δG(x, y) =
‖x− y‖ ≤ t · ‖x− y‖ for all t ≥ 1.

If, on the other hand, there is no direct edge between x and y, we know that x and y must
lie in some well-separated pair {Pu, Pv} defined by the pair of nodes {u, v} in the quadtree.
let pu = rep(u) and pv = rep(v) be the respective representative points. (It might be that
pu = x or pv = y, but not both.) Let us consider the length of the path from x to pu to pv to
y. Since the edge {pu, pv} is in the graph, we have

δG(x, y) ≤ δG(x, pu) + δG(pu, pv) + δG(pv, y)

≤ δG(x, pu) + ‖pu − pv‖+ δG(pv, y).

(See Fig. 4.)

2r 2r

≥ sr
x

puPu Pv
pv

y

Fig. 4: Proof of the spanner bound.

The paths from x to pu and pv to y are subpaths of the full spanner path from x to y,
and hence they use fewer edges. Thus, we may apply the induction hypothesis, which yields
δG(x, pu) ≤ t‖x− pu‖ and δG(pv, y) ≤ t‖pv − y‖, yielding

δG(x, y) ≤ t(‖x− pu‖+ ‖pv − y‖) + ‖pu − pv‖. (1)

By the WSPD Utility Lemma (with {x, pu} from one pair and {y, pv} from the other) we
have

max(‖x− pu‖, ‖pv − y‖) ≤
2

s
· ‖x− y‖ and ‖pu − pv‖ ≤

(
1 +

4

s

)
‖x− y‖.

Combining these observations with Eq. (1) we obtain

δG(x, y) ≤ t

(
2 · 2

s
· ‖x− y‖

)
+

(
1 +

4

s

)
‖x− y‖ =

(
1 +

4(t+ 1)

s

)
‖x− y‖.

To complete the proof, observe that it suffices to select s so that 1 + 4(t+ 1)/s ≤ t. Towards
this end, let us set

s = 4

(
t+ 1

t− 1

)
.

Lecture 17 5 Spring 2020

CMSC 754 Dave Mount

This is well defined for any t > 1. By substituting in this value of s, we have

δG(x, y) ≤
(

1 +
4(t+ 1)

4(t+ 1)/(t− 1)

)
‖x− y‖ = (1 + (t− 1))‖x− y‖ = t · ‖x− y‖,

which completes the correctness proof.

Because we have one spanner edge for each well-separated pair, the number of edges in the
spanner is O(sdn). Since spanners are most interesting for small stretch factors, let us assume
that t ≤ 2. If we express t as t = 1 + ε for ε ≤ 1, we see that the size of the spanner is

O(sdn) = O

((
4

(1 + ε) + 1

(1 + ε)− 1

)d

n

)
≤ O

((
12

ε

)d

n

)
= O

(n
εd

)
.

In conclusion, we have the following theorem:

Theorem: Given a point set P in Rd and ε > 0, a (1 + ε)-spanner for P containing O(n/εd)
edges can be computed in time O(n log n+ n/εd).

Approximating the Euclidean MST: The Euclidean Minimum Spanning Tree (EMST) of a
point set P is the minimum spanning tree of the complete Euclidean graph on P . In an
earlier lecture, we showed that the EMST is a subgraph of the Delaunay triangulation of P .
This provided an O(n log n) time algorithm in the plane. Unfortunately, the generalization to
higher dimensions was not interesting because the worst-case number of edges in the Delaunay
triangulation is quadratic in dimensions 3 and higher.

We will now that for any constant approximation factor ε, it is possible to compute an ε-
approximation to the minimum spanning tree in any constant dimension d. Given a graph
G with v vertices and e edges, it is well known that the MST of G can be computed in time
O(e+ v log v). It follows that we can compute the EMST of a set of points in any dimension
by first constructing the Euclidean graph and then computing its MST, which takes O(n2)
time. To compute the approximation to the EMST, we first construct a (1 + ε)-spanner, call
it G, and then compute and return the MST of G (see Fig. 5). This approach has an overall
running time of O(n log n+ sdn).

Euclidean graph Euclidean MST Spanner Approximate MST

Fig. 5: Approximating the Euclidean MST.

To see why this works, consider any pair of points {x, y}, and let w(x, y) = ‖x−y‖ denote the
weight of the edge between them in the complete Euclidean graph. Let T denote the edges of

Lecture 17 6 Spring 2020

CMSC 754 Dave Mount

the Euclidean minimum weight spanning tree, and w(T) denote the total weight of its edges.
For each edge {x, y} ∈ T , let πG(x, y) denote the shortest path (as a set of edges) between x
and y in the spanner, G. Since G is a spanner, we have

w(πG(x, y)) = δG(x, y) ≤ (1 + ε)‖x− y‖.

Now, consider the subgraph G′ ⊆ G formed by taking the union of all the edges of πG(x, y)
for all {x, y} ∈ T . That is, G and G′ have the same vertices, but each edge of the MST is
replaced by its spanner path. Clearly, G′ is connected (but it may not be a tree). We can
bound the weight of G′ in terms of the weight of the Euclidean MST:

w(G′) =
∑

{x,y}∈T

w(πG(x, y)) ≤
∑

{x,y}∈T

(1 + ε)‖x− y‖

= (1 + ε)
∑

{x,y}∈T

‖x− y‖ = (1 + ε)w(T).

However, because G and G′ share the same vertices, and the edge set of G′ is a subset of the
edge set of G, it follows that w(MST(G) ≤ w(MST(G′)). (To see this, observe that if you
have fewer edges from which to form the MST, you may generally be forced to use edges of
higher weight to connect all the vertices.) Combining everything we have

w(MST(G)) ≤ w(MST(G′)) ≤ w(G′) ≤ (1 + ε)w(T),

yielding the desired approximation bound.

Lecture 17 7 Spring 2020

