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Introduction Pages 1–3

Early Topological Insights

⇒
Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

Euler observed that the subpaths within each land mass are irrelevant.

Use an abstract model of land masses and their connectivity – a graph!

A path enters a node through an edge, and exits through another edge.

The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]
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Introduction Pages 1–3

More Graph Theory

Complete graph K5, complete bipartite graph K3,3, and the Petersen graph

Forbidden Graph Characterizations

A minor H of a graph G is the result of a sequence of operations:

Contraction (merge two adjacent vertices), edge and vertex deletion.

A graph if planar iff it does not have any K5 or K3,3 minors.

Hadwiger conjecture: a graph is t-colorable iff it does not have any Kt minors.

Figures from Wikipedia [3, 4, 5]
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Introduction Pages 1–3

Surfaces

0 holes 1 hole 2 handles 3 handles

Topological Invariants

Instead of edge deletion and contraction for graphs, we study surfaces
under continuous deformations that do not tear or pinch the surface.

The genus corresponds to the number of holes or handles.

Joke: a topologist cannot distinguish his coffee mug from his doughnut!

Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
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Introduction Pages 1–3

How do you compute the genus without looking?
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Introduction Pages 1–3

Convex Polytopes

4− 6 + 4 8− 12 + 6 6− 12 + 8 20− 30 + 12 12− 30 + 20

Euler’s Polyhedron Formula

Alternating sum of the number of vertices (V), edges (E), and facets (F)
χ = V − E + F

As spheres can be continuously deformed into convex polytopes, they
also have an Euler characteristic of 2.

Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]
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Preliminaries Page 4

What about non-convex surfaces?
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Preliminaries Page 4

Wireframes

Rendering all triangles Wireframe, edges only
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Preliminaries Page 4

Simplicial Complexes

A 3-simplex Four 2-simplices Six 1-simplices Four 0-simplices

Definitions

A p-simplex is the convex hull of (p + 1) affinely-independent points.

We write this as σ = [v0, . . . , vp] = conv{v0, . . . , vp} and say dim σ = p.

A simplicial complex K is a set of simplices closed under intersection,
and its dimension dim K is the maximum dimension of its simplices.

If σ1, σ2 ∈ K , then σ1 ∩ σ2 ∈ K . The (−1)-simplex ∅ is always in K .
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Preliminaries Page 4

Simplicial Complexes

A 3-simplex Four 2-simplices Six 1-simplices Four 0-simplices

Definitions

A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write
this as τ � σ, and say that σ is a coface of τ .

A (co)face τ of a simplex σ is proper if dim τ 6= dim σ.

The boundary ∂σ is the collection of proper faces of σ

The interior of σ is defined as |σ| = σ − ∂σ.

The underlying space of a complex K is defined as |K | = ∪σ∈K |σ|.
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Simplicial Approximations Pages 5–7

How to represent a mapping between two surfaces?
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Simplicial Approximations Pages 5–7

Continuous Deformations

A continuous deformation of a cow model into a ball

Figure from Wikipedia [15]
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Simplicial Approximations Pages 5–7

Continuous Maps

Continuity at x = 2 by (ε, δ) Continuity at x ∈ X using neighborhoods

Definition of Continuity

Small changes in the input yield small changes in the output.

Calculus formalizes this notion using the (ε, δ)-definition of the limit.

For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Figures from Wikipedia [16, 17]
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Simplicial Approximations Pages 5–7

Homeomorphisms

f

f −1

Definition

Two topological spaces X and Y are said to be homeomorphic whenever
there exists a continuous map f : X → Y with a continuous inverse
f −1 : Y → X . Such a function f is called a homeomorphism.

Figure from Wikipedia [15]
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Simplicial Approximations Pages 5–7

But, we will be using the triangulations rather than
the surfaces ...
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Simplicial Approximations Pages 5–7

Triangulations

Definition

A triangulation of a topological space X is a simplicial complex X̂ such
that X and |X̂ | are homeomorphic.

A topological space is triangulable if it admits a triangulation.
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Simplicial Approximations Pages 5–7

Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

Fix a simplicial complex K .

The star of σ is the collection its cofaces:

StK (σ) = {τ ∈ K | σ � τ}.

The star neighborhood of σ is the union of the interior of its cofaces:

NK (σ) = ∪τ∈StK (σ)|τ |.
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Simplicial Approximations Pages 5–7

Continuous Maps between Simplicial Complexes

X̂ 7→ Ŷ

The Star Condition

Fix two simplicial complexes X̂ and Ŷ and a map f̂ : |X̂ | → |Ŷ |.
We say that f̂ satisfies the star condition if for all vertices v ∈ X̂

f̂
(
NX̂ (v)

)
⊆ NŶ (u) for some vertex u = φ(v) ∈ Ŷ .

The map φ : Vert X̂ → Vert Ŷ extends to a simplicial map that maps
every simplex σ ∈ X̂ to some simplex τ ∈ Ŷ .

The simplicial map induces a simplicial approximation: a piecewise-linear
map f̂∆ : X̂ → Ŷ that approximates the original function f .
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We say that f̂ satisfies the star condition if for all vertices v ∈ X̂

f̂
(
NX̂ (v)

)
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map f̂∆ : X̂ → Ŷ that approximates the original function f .
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⊆ NŶ (u) for some vertex u = φ(v) ∈ Ŷ .
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What if f̂ : |X̂ | → |Ŷ | fails the star condition?
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Simplicial Approximations Pages 5–7

Simplicial Approximation Theorem

Barycentric Subdivisions

If there exists a vertex v ∈ X̂ such that f̂
(
NX̂ (v)

)
is not contained in

NŶ (u) for any vertex u ∈ Ŷ , then NX̂ (v) is too large!

Solution: refine X̂ without changing f̂ : X̂ → Ŷ .

The barycenter of σ = [v0, . . . , vp] is defined as 1
p+1

∑p
i=0 vi .

Repeated subdivisions eventually achieve the star condition.
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Chains Pages 8–9

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

Recall the alternating sum used to compute the Euler characteristic χ.

We would like to derive a similar computation on a simplicial complex K .

But, a single simplex can be shared among multiple cofaces.

How do we keep track of the correct count?
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Recall the alternating sum used to compute the Euler characteristic χ.

We would like to derive a similar computation on a simplicial complex K .

But, a single simplex can be shared among multiple cofaces.
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Chains Pages 8–9

Chains

Counting Modulo 2

Define a p-chain as a subset of the p-simplices in the complex K .

We write a p-chain as a formal sum c =
∑

i aiσi , where σi ranges over
the p-simplices and ai is a coefficient.

We will work with coefficients in F2 = {0, 1} with addition modulo 2.
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Chains Pages 8–9

Chains

Counting Modulo 2

Two p-chains can be added to obtain a new p-chain.

Letting c1 =
∑

i aiσi and c2 =
∑

i biσi . Then, c1 + c2 =
∑

i (ai + bi )σi .

As ai + bi ∈ F2 for all i , we get that c1 + c2 is a chain.

Regarding p-chains as sets, we can interpret that c1 + c2 with modulo 2
coefficients is the symmetric difference between the two sets.
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Chains Pages 8–9

Chain Groups

Algebra I

A group (A, •) is a set A together with a binary operation satisfying:

Closure: for all α, β ∈ A, we have that α • β ∈ A.

Associativity: so that for all α, β, γ ∈ A we have α • (β • γ) = (α •β) • γ.

A has an identity element ω such that α + ω = α for all α ∈ A.

If, in addition, • is commutative, we have that α • β = β • α for all α, β ∈ A,
and we say the group (A, •) is abelian.

Chains as Groups

We can now recognize p-chains (Cp,+) as abelian groups.

Chains as Vector Spaces

If the complex K has np p-simplices, then Cp is (isomorphic to) the set of
binary vectors of length np, i.e., {0, 1}np , with the exclusive-or operation ⊕.
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Chains Pages 8–9

Boundary of a Chain

Linear Extensions

Fix a p-simplex σ = [v0, . . . , vp] in the complex K .

Recall that the boundary of σ is the collection of its proper faces, which
we denoted by ∂σ.

We can now express the boundary elements as a single (p − 1)-chain

∂pσ =

p∑
i=0

[v0, . . . , v̂i , . . . , vp],

where v̂i indicates that vi is excluded in the corresponding face.

Notice that we used the subscript to qualify the boundary operator as
the one acting on the p-th chain group.

For any p-chain c =
∑

i aiσi , its boundary is the (p − 1)-chain

∂pc = ∂p

(∑
i

aiσi

)
=
∑
i

ai∂pσi .
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Chains Pages 8–9

The Chain Complex

∂3−→ ∂2−→ ∂1−→ ∂0−→ 0

Boundary Homomorphisms

The boundary operator ∂p commutes with the group operations.

If c1 and c2 are p-chains, then: ∂p(c1 +(p) c2) = ∂pc1 +(p−1) ∂pc2, where
we qualify the addition operators on each side of the equation.

This means that ∂p induces a group homomorphism or a mapping
between groups that preserves the group structures: ∂p : Cp → Cp−1.

We can arrange the chain groups into a chain complex, effectively
replacing the geometric complex K with a series of algebraic modules.

. . .
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−−→ . . .
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Chains Pages 8–9

But like .. what’s the point?
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Chains Pages 8–9

Boundary Matrices

Chains Groups as Vector Spaces

Let {σi}i and {τj}j denote the p-simplices and (p − 1)-simplices of K .

The boundary of a p-chain c =
∑

i aiσi is the (p − 1)-chain

∂pc = ∂p

(∑
i

aiσi

)
=
∑
i

ai∂pσi =
∑
i

ai
∑
j

∂j,ip τj =
∑
j

bjτj ,

where bi =
∑

i

(
ai∂

j,i
p

)
, and ∂j,ip is 1 if τj ∈ ∂pσi and 0 otherwise.

With that, we can express the boundary operator ∂p in matrix form.

∂pc =


b1

b2

...
bnp−1

 , ∂p =


∂1,1
p ∂1,2

p · · · ∂
1,np
p

∂2,1
p ∂2,2

p · · · ∂
2,np
p

...
...

. . .
...

∂
np−1,0
p ∂

np−1,2
p · · · ∂

np−1,np
p

 , c =


a1

a2

...
anp


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Chains Pages 8–9

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

We have a blue and a red loop.

Also the boundary of the black triangle.

Which of those help distinguish the torus
from a sphere?

Chains with No Boundary

Any such chain is called a p-cycle.

A p-cycle that arises as the boundary of a (p + 1)-chain is a p-boundary.

We need a way to count distinct p-cycles while ignoring all p-boundaries.

Observe that ∂p ◦ ∂p+1 = 0.

Figure from Wikipedia [18]
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from a sphere?

Chains with No Boundary
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Homology Page 10

Equivalence and Quotients

Boundaries and Cycles as Subgroups

Denote all p-cycles by Zp and all p-boundaries by Bp.

As the boundary map commutes with addition, Zp is a subgroup of Cp.

Likewise, Bp is a subgroup of Zp.

For any p-cycle α ∈ Zp and a p-boundary β, we get that α + β ∈ Zp.

Algebra II

We define an equivalence relation that identifies a pair of elements
α, α′ ∈ Zp whenever α′ = α + β for some β ∈ Bp.

The equivalence relation partitions Zp into equivalence classes or cosets;
the coset [α] consists of all the elements identified with α.

Then, the collection of cosets together with the addition operator give
rise to the quotient group Zp/Bp of the elements in Zp modulo the
elements in Bp.
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Homology Page 10

Homology

Algebra III

Take a group (A, •).

The order of the group is the cardinality of A.
The rank of the group is the cardinality of a minimal generator.

For a set of binary vectors, such as Cp or Zp

The order is the number of distinct binary vectors.
The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

We can now defined the p-th homology group as Hp = Zp/Bp.

The rank of Hp is known as the p-th Betti number βp

βp = rank Hp = rank Zp − rank Bp.
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Homology Page 10

Rank-Nullity

Algebra IV

Let V and W be vector spaces and T : V →W a linear transformation.

We define the kernel of T as the subspace of V , denoted Ker(T ) of all
vectors v such that T (v) = 0.

The remaining elements v ∈ V for which T (v) 6= 0 are mapped to a
subspace of W , i.e., the image of T .

The rank-nullity theorem states that

dim V = dim Image(T ) + dim Ker(T ).

In the Context of Homology

Zp is the kernel of ∂p, while Bp−1 is its image.

Hence, rank Cp = rank Zp + rank Bp−1.
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Homology Page 10

Rank-Nullity

Bp+1

Zp+1

Cp+1

Bp

Zp

Cp

Bp−1

Zp−1

Cp−1

0 0 0

∂p+2 ∂p+1 ∂p ∂p−1

In the Context of Homology

Zp is the kernel of ∂p, while Bp−1 is its image.

Hence, rank Cp = rank Zp + rank Bp−1.
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Homology Page 10

The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler’s polyhedron formula, we may write

χ =
∑
p≥0

(−1)p rank Cp

=
∑
p≥0

(−1)p(rank Zp + rank Bp−1)

=
∑
p≥0

(−1)p(rank Zp − rank Bp)

=
∑
p≥0

(−1)pβp.

(we skip some technicalities underlying the substitution highlighted in red)

Note that the homology groups and the Betti numbers do not depend on the
specific triangulation of the underlying space, i.e., they are indeed topological
invariants.
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Homology Page 10

Matrix Reduction

Rank Computations

To compute βp as the difference between rank Zp and rank Bp we work
with the matrix representation of the boundary map ∂p.

Using a sequence of row/column operations, the matrix is reduced
without changing its rank into a simple form easily providing the ranks.

A variant of Gaussian elimination is used to get the Smith normal form.

rank Bp−1

rank Cp−1

rank Cp

rank Zp
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without changing its rank into a simple form easily providing the ranks.

A variant of Gaussian elimination is used to get the Smith normal form.
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Functoriality Pages 10.5–12

Induced Maps on Homology

. . . Cp+1(X̂ ) Cp(X̂ ) Cp−1(X̂ ) . . .

. . . Cp+1(Ŷ ) Cp(Ŷ ) Cp−1(Ŷ ) . . .

∂X̂ ∂X̂

f̂#

∂X̂

f̂#

∂X̂

f̂#

∂Ŷ ∂Ŷ ∂Ŷ ∂Ŷ

Functoriality

A simplicial map f̂∆ : X̂ → Ŷ maps simplices in X̂ to simplices in Ŷ .

A simplicial map extends to a map from the chains of X̂ to the chains of
Ŷ , which we denote by f̂# : Cp(X̂ )→ Cp(Ŷ ), as shown in the diagram.

As f̂# commutes with boundary maps, it also maps the cycles and

boundaries of X̂ to the cycles and boundaries of Ŷ , respectively.

Hence, f̂# maps the homology groups of X̂ to the homology groups of Ŷ ,

i.e., it induces a map on homology denoted by H(f̂ ) : Hp(X̂ )→ Hp(Ŷ ).
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As f̂# commutes with boundary maps, it also maps the cycles and

boundaries of X̂ to the cycles and boundaries of Ŷ , respectively.
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Functoriality Pages 10.5–12

Applications of H(f̂ ) : Hp(X̂ )→ Hp(Ŷ )

Y1 Y2

X

f

f1 f2

Indirect Inference

If a map f : Y1 → Y2 factors through f1 : Y1 → X and f2 : X → Y2 such that
f = f2 ◦ f1, then we can infer the homology groups of X using knowledge of
the homology groups of Y1 and Y2.
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Functoriality Pages 10.5–12

Brouwer’s Fixed Point Theorem

x

f (x)

r(x)

∂D D ∂Dι

Id

r F2 0 F2
H(ι)

Id

H(r)

Every continuous map from the disc to itself has a fixed point

Assume that f : D→ D is continuous and has no fixed point.

Define r : D→ ∂D as the intersection of the ray form x to f (x) with ∂D.

As f is continuous, so is r . Hence, the diagram in the middle commutes.

Passing through homology, as shown to the right, we get that

H1(∂D) ∼= F2 while H1(D) = 0.
But then, H(r) ◦ H(ι) 6= Id. A contradiction!
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Topological Data Analysis Pages 13–14

But, how do we get triangulations in the first place?
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Topological Data Analysis Pages 13–14

Sampled Data and Noise

The Cêch Complex

We are given a collection of sample points from an unknown underlying
manifold or surface in Rd .

We would like to infer some of the properties of the manifold.

To do so, we grow a ball at each sample and take the union.

Then, we derive an abstract simplicial complex from the union of balls.
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Topological Data Analysis Pages 13–14

But, how do we choose the radii of the balls?
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Topological Data Analysis Pages 13–14

Scale and Persistence

Examining All Scales at Once

As shown above, different radii may result in very different results.

Imagine a continuous process growing the radii from r = 0 to r =∞.

Each topological feature will be present over an interval [a, b).
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Topological Data Analysis Pages 13–14

Scale and Persistence

Examining All Scales at Once

Each topological feature will be present over an interval [a, b).

Define the persistence of the feature as b − a.

Features of high persistence are salient, while noise has low persistence.
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Conclusion

Summary

∂p =


∂1,1
p ∂1,2

p · · · ∂
1,np
p

∂2,1
p ∂2,2

p · · · ∂
2,np
p

...
...

. . .
...

∂
np−1,0
p ∂

np−1,2
p · · · ∂

np−1,np
p



Hp = Zp/Bp

Main Concepts Introduced

Continuous deformations

Simplicial approximations

Chain algebra and homology

Functoriality

Figure from Wikipedia [15]
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Conclusion

Summary

Key Concepts Missing

Persistent homology

Persistence diagrams and barcodes

Simplicial collapses

Sparse filtrations and interleaving
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