Introduction to Computational Topology

Ahmed Abdelkader

Guest Lecture
CMSC 754 - Spring 2020
May 7th, 2020

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once
The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once
The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once
The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once
The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once
The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity - a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

More Graph Theory

Complete graph K_{5}, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
- Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_{5} or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_{t} minors.

More Graph Theory

Complete graph K_{5}, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
- Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_{5} or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_{t} minors.

More Graph Theory

Complete graph K_{5}, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
- Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_{5} or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_{t} minors.

More Graph Theory

Complete graph K_{5}, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
- Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_{5} or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_{t} minors.

Surfaces

0 holes

1 hole

2 handles

3 handles

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut! - Topology as rubber-sheet geometry

Surfaces

0 holes

1 hole

2 handles

3 handles

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
- Topology as rubber-sheet geometry

Surfaces

0 holes

1 hole

2 handles

3 handles

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
- Topology as rubber-sheet geometry

Surfaces

0 holes

1 hole

2 handles

3 handles

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
- Topology as rubber-sheet geometry

Surfaces

0 holes

1 hole

2 handles

3 handles

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
- Topology as rubber-sheet geometry

How do you compute the genus without looking?

Convex Polytopes

$4-6+4$

$8-12+6$

$6-12+8$

$20-30+12$

$12-30+20$

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F)

$$
\chi=V-E+F
$$

- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Convex Polytopes

$4-6+4$

$8-12+6$

$6-12+8$

$20-30+12$

$12-30+20$

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F)

$$
\chi=V-E+F
$$

- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Convex Polytopes

$4-6+4$

$8-12+6$

$6-12+8$

$20-30+12$

$12-30+20$

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F)

$$
\chi=V-E+F
$$

- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

What about non-convex surfaces?

Wireframes

Rendering all triangles

Wireframe, edges only

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A p-simplex is the convex hull of $(p+1)$ affinely-independent points.
- We write this as $\sigma=\left[v_{0}, \ldots, v_{p}\right]=\operatorname{conv}\left\{v_{0}, \ldots, v_{p}\right\}$ and say $\operatorname{dim} \sigma=p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension $\operatorname{dim} K$ is the maximum dimension of its simplices.
- If $\sigma_{1}, \sigma_{2} \in K$, then $\sigma_{1} \cap \sigma_{2} \in K$. The (-1)-simplex \emptyset is always in K.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A p-simplex is the convex hull of $(p+1)$ affinely-independent points.
- We write this as $\sigma=\left[v_{0}, \ldots, v_{p}\right]=\operatorname{conv}\left\{v_{0}, \ldots, v_{p}\right\}$ and say $\operatorname{dim} \sigma=p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension $\operatorname{dim} K$ is the maximum dimension of its simplices.
- If $\sigma_{1}, \sigma_{2} \in K$, then $\sigma_{1} \cap \sigma_{2} \in K$. The (-1)-simplex \emptyset is always in K.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A p-simplex is the convex hull of $(p+1)$ affinely-independent points.
- We write this as $\sigma=\left[v_{0}, \ldots, v_{p}\right]=\operatorname{conv}\left\{v_{0}, \ldots, v_{p}\right\}$ and say $\operatorname{dim} \sigma=p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension $\operatorname{dim} K$ is the maximum dimension of its simplices.
- If $\sigma_{1}, \sigma_{2} \in K$, then $\sigma_{1} \cap \sigma_{2} \in K$. The (-1)-simplex \emptyset is always in K.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A p-simplex is the convex hull of $(p+1)$ affinely-independent points.
- We write this as $\sigma=\left[v_{0}, \ldots, v_{p}\right]=\operatorname{conv}\left\{v_{0}, \ldots, v_{p}\right\}$ and say $\operatorname{dim} \sigma=p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension $\operatorname{dim} K$ is the maximum dimension of its simplices.
- If $\sigma_{1}, \sigma_{2} \in K$, then $\sigma_{1} \cap \sigma_{2} \in K$. The (-1)-simplex \emptyset is always in K.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k+1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\operatorname{dim} \tau \neq \operatorname{dim} \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The interior of σ is defined as $|\sigma|=\sigma-\partial \sigma$.
- The underlying space of a complex K is defined as $|K|=\cup_{\sigma \in K}|\sigma|$.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k+1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\operatorname{dim} \tau \neq \operatorname{dim} \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The interior of σ is defined as $|\sigma|=\sigma-\partial \sigma$.
- The underlying space of a complex K is defined as $|K|=\cup_{\sigma \in K}|\sigma|$.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k+1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\operatorname{dim} \tau \neq \operatorname{dim} \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The interior of σ is defined as $|\sigma|=\sigma-\partial \sigma$.
- The underlying space of a complex K is defined as $|K|=\cup_{\sigma \in K}|\sigma|$.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k+1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\operatorname{dim} \tau \neq \operatorname{dim} \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The interior of σ is defined as $|\sigma|=\sigma-\partial \sigma$.
- The underlying space of a complex K is defined as $|K|=\cup_{\sigma \in K}|\sigma|$.

Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices
-

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k+1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\operatorname{dim} \tau \neq \operatorname{dim} \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The interior of σ is defined as $|\sigma|=\sigma-\partial \sigma$.
- The underlying space of a complex K is defined as $|K|=\cup_{\sigma \in K}|\sigma|$.

How to represent a mapping between two surfaces?

Continuous Deformations

A continuous deformation of a cow model into a ball

Figure from Wikipedia [15]

Continuous Maps

Continuity at $x=2$ by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ)-definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Continuous Maps

Continuity at $x=2$ by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ)-definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Continuous Maps

Continuity at $x=2$ by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ)-definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Homeomorphisms

Definition

Two topological spaces X and Y are said to be homeomorphic whenever there exists a continuous map $f: X \rightarrow Y$ with a continuous inverse $f^{-1}: Y \rightarrow X$. Such a function f is called a homeomorphism.

But, we will be using the triangulations rather than the surfaces

Triangulations

Definition

- A triangulation of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.
- A topological space is triangulable if it admits a triangulation.

Triangulations

Definition

- A triangulation of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.
- A topological space is triangulable if it admits a triangulation.

Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:

$$
\operatorname{St}_{K}(\sigma)=\{\tau \in K \mid \sigma \preceq \tau\} .
$$

- The star neighborhood of σ is the union of the interior of its cofaces:

$$
N_{K}(\sigma)=\cup_{\tau \in \operatorname{St}_{K}(\sigma)}|\tau| .
$$

Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:

$$
\operatorname{St}_{K}(\sigma)=\{\tau \in K \mid \sigma \preceq \tau\} .
$$

- The star neighborhood of σ is the union of the interior of its cofaces:

$$
N_{K}(\sigma)=\cup_{\tau \in \operatorname{St}_{\kappa}(\sigma)}|\tau| .
$$

Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:

$$
\operatorname{St}_{K}(\sigma)=\{\tau \in K \mid \sigma \preceq \tau\} .
$$

- The star neighborhood of σ is the union of the interior of its cofaces:

$$
N_{K}(\sigma)=\cup_{\tau \in \operatorname{St}_{\kappa}(\sigma)}|\tau| .
$$

Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f}:|\hat{X}| \rightarrow|\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

$$
\hat{f}\left(N_{\hat{X}}(v)\right) \subseteq N_{\hat{Y}}(u) \quad \text { for some vertex } u=\phi(v) \in \hat{Y} .
$$

- The map $\phi:$ Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ that approximates the original function f.

Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f}:|\hat{X}| \rightarrow|\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

$$
\hat{f}\left(N_{\hat{X}}(v)\right) \subseteq N_{\hat{Y}}(u) \quad \text { for some vertex } u=\phi(v) \in \hat{Y} .
$$

- The map $\phi:$ Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ that approximates the original function f.

Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f}:|\hat{X}| \rightarrow|\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

$$
\hat{f}\left(N_{\hat{X}}(v)\right) \subseteq N_{\hat{Y}}(u) \quad \text { for some vertex } u=\phi(v) \in \hat{Y} .
$$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ that approximates the original function f.

Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f}:|\hat{X}| \rightarrow|\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

$$
\hat{f}\left(N_{\hat{X}}(v)\right) \subseteq N_{\hat{Y}}(u) \quad \text { for some vertex } u=\phi(v) \in \hat{Y} .
$$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ that approximates the original function f.

What if $\hat{f}:|\hat{X}| \rightarrow|\hat{Y}|$ fails the star condition?

Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}\left(N_{\hat{X}}(v)\right)$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_{i}$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}\left(N_{\hat{X}}(v)\right)$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_{i}$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}\left(N_{\hat{X}}(v)\right)$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_{i}$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}\left(N_{\hat{X}}(v)\right)$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_{i}$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}\left(N_{\hat{X}}(v)\right)$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_{i}$.
- Repeated subdivisions eventually achieve the star condition.

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

From Convex Polyhedra to Simplicial Complexes

Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count? Algebra!

Chains

Counting Modulo 2

- Define a p-chain as a subset of the p-simplices in the complex K.
- We write a p-chain as a formal sum $c=\sum_{i} a_{i} \sigma_{i}$, where σ_{i} ranges over the p-simplices and a_{i} is a coefficient.
- We will work with coefficients in $\mathbb{F}_{2}=\{0,1\}$ with addition modulo 2.

Chains

Counting Modulo 2

- Define a p-chain as a subset of the p-simplices in the complex K.
- We write a p-chain as a formal sum $c=\sum_{i} a_{i} \sigma_{i}$, where σ_{i} ranges over the p-simplices and a_{i} is a coefficient.
- We will work with coefficients in $\mathbb{F}_{2}=\{0,1\}$ with addition modulo 2.

Chains

Counting Modulo 2

- Define a p-chain as a subset of the p-simplices in the complex K.
- We write a p-chain as a formal sum $c=\sum_{i} a_{i} \sigma_{i}$, where σ_{i} ranges over the p-simplices and a_{i} is a coefficient.
- We will work with coefficients in $\mathbb{F}_{2}=\{0,1\}$ with addition modulo 2.

Chains

Counting Modulo 2

- Two p-chains can be added to obtain a new p-chain.
- Letting $c_{1}=\sum_{i} a_{i} \sigma_{i}$ and $c_{2}=\sum_{i} b_{i} \sigma_{i}$. Then, $c_{1}+c_{2}=\sum_{i}\left(a_{i}+b_{i}\right) \sigma_{i}$.
- As $a_{i}+b_{i} \in \mathbb{F}_{2}$ for all i, we get that $c_{1}+c_{2}$ is a chain.
- Regarding p-chains as sets, we can interpret that $c_{1}+c_{2}$ with modulo 2 coefficients is the symmetric difference between the two sets.

Chains

Counting Modulo 2

- Two p-chains can be added to obtain a new p-chain.
- Letting $c_{1}=\sum_{i} a_{i} \sigma_{i}$ and $c_{2}=\sum_{i} b_{i} \sigma_{i}$. Then, $c_{1}+c_{2}=\sum_{i}\left(a_{i}+b_{i}\right) \sigma_{i}$.
- As $a_{i}+b_{i} \in \mathbb{F}_{2}$ for all i, we get that $c_{1}+c_{2}$ is a chain.
- Regarding p-chains as sets, we can interpret that $c_{1}+c_{2}$ with modulo 2 coefficients is the symmetric difference between the two sets.

Chains

Counting Modulo 2

- Two p-chains can be added to obtain a new p-chain.
- Letting $c_{1}=\sum_{i} a_{i} \sigma_{i}$ and $c_{2}=\sum_{i} b_{i} \sigma_{i}$. Then, $c_{1}+c_{2}=\sum_{i}\left(a_{i}+b_{i}\right) \sigma_{i}$.
- As $a_{i}+b_{i} \in \mathbb{F}_{2}$ for all i, we get that $c_{1}+c_{2}$ is a chain.
- Regarding p-chains as sets, we can interpret that $c_{1}+c_{2}$ with modulo 2 coefficients is the symmetric difference between the two sets.

Chains

Counting Modulo 2

- Two p-chains can be added to obtain a new p-chain.
- Letting $c_{1}=\sum_{i} a_{i} \sigma_{i}$ and $c_{2}=\sum_{i} b_{i} \sigma_{i}$. Then, $c_{1}+c_{2}=\sum_{i}\left(a_{i}+b_{i}\right) \sigma_{i}$.
- As $a_{i}+b_{i} \in \mathbb{F}_{2}$ for all i, we get that $c_{1}+c_{2}$ is a chain.
- Regarding p-chains as sets, we can interpret that $c_{1}+c_{2}$ with modulo 2 coefficients is the symmetric difference between the two sets.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet(\beta \bullet \gamma)=(\alpha \bullet \beta) \bullet \gamma$.
- A has an identity element ω such that $\alpha+\omega=\alpha$ for all $\alpha \in A$.

If, in addition, \bullet is commutative, we have that $\alpha \bullet \beta=\beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is abelian.

Chains as Groups

We can now recognize p-chains $\left(C_{p},+\right)$ as abelian groups.

Chains as Vector Spaces

If the complex K has $n_{p} p$-simplices, then C_{p} is (isomorphic to) the set of binary vectors of length n_{p}, i.e., $\{0,1\}^{n_{p}}$, with the exclusive-or operation \oplus.

Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single ($p-1$)-chain

$$
\partial_{p} \sigma=\sum_{i=0}^{p}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right],
$$

where \hat{v}_{i} indicates that v_{i} is excluded in the corresponding face.

- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c=\sum_{i} a_{i} \sigma_{i}$, its boundary is the ($p-1$)-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i} .
$$

Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single ($p-1$)-chain

$$
\partial_{p} \sigma=\sum_{i=0}^{p}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right],
$$

where \hat{v}_{i} indicates that v_{i} is excluded in the corresponding face.

- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c=\sum_{i} a_{i} \sigma_{i}$, its boundary is the ($p-1$)-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i} .
$$

Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p-1)$-chain

$$
\partial_{p} \sigma=\sum_{i=0}^{p}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right],
$$

where \hat{v}_{i} indicates that v_{i} is excluded in the corresponding face.

- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c=\sum_{i} a_{i} \sigma_{i}$, its boundary is the ($p-1$)-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i} .
$$

Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p-1)$-chain

$$
\partial_{p} \sigma=\sum_{i=0}^{p}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right],
$$

where \hat{v}_{i} indicates that v_{i} is excluded in the corresponding face.

- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c=\sum_{i} a_{i} \sigma_{i}$, its boundary is the ($p-1$)-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i} .
$$

Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma=\left[v_{0}, \ldots, v_{p}\right]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p-1)$-chain

$$
\partial_{p} \sigma=\sum_{i=0}^{p}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{p}\right],
$$

where \hat{v}_{i} indicates that v_{i} is excluded in the corresponding face.

- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c=\sum_{i} a_{i} \sigma_{i}$, its boundary is the ($p-1$)-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i}
$$

The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_{p} commutes with the group operations.
- If c_{1} and c_{2} are p-chains, then: $\partial_{p}\left(c_{1}+_{(p)} c_{2}\right)=\partial_{p} c_{1}+_{(p-1)} \partial_{p} c_{2}$, where we qualify the addition operators on each side of the equation.
- This means that ∂_{p} induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_{p}: C_{p} \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$
\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots
$$

The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_{p} commutes with the group operations.
- If c_{1} and c_{2} are p-chains, then: $\partial_{p}\left(c_{1}+{ }_{(p)} c_{2}\right)=\partial_{p} c_{1}{ }_{(p-1)} \partial_{p} c_{2}$, where we qualify the addition operators on each side of the equation.
- This means that ∂_{p} induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_{p}: C_{p} \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$
\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots
$$

The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_{p} commutes with the group operations.
- If c_{1} and c_{2} are p-chains, then: $\partial_{p}\left(c_{1}+{ }_{(p)} c_{2}\right)=\partial_{p} c_{1}{ }_{(p-1)} \partial_{p} c_{2}$, where we qualify the addition operators on each side of the equation.
- This means that ∂_{p} induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_{p}: C_{p} \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$
\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{\rho}} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots
$$

The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_{p} commutes with the group operations.
- If c_{1} and c_{2} are p-chains, then: $\partial_{p}\left(c_{1}+{ }_{(p)} c_{2}\right)=\partial_{p} c_{1}+{ }_{(p-1)} \partial_{p} c_{2}$, where we qualify the addition operators on each side of the equation.
- This means that ∂_{p} induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_{p}: C_{p} \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$
\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots
$$

But like .. what's the point?

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\left\{\sigma_{i}\right\}_{i}$ and $\left\{\tau_{j}\right\}_{j}$ denote the p-simplices and ($p-1$)-simplices of K.
- The boundary of a p-chain $c=\sum_{i} a_{i} \sigma_{i}$ is the $(p-1)$-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i}=\sum_{i} a_{i} \sum_{j} \partial_{p}^{j, i} \tau_{j}=\sum_{j} b_{j} \tau_{j},
$$

where $b_{i}=\sum_{i}\left(a_{i} \partial_{p}^{j, i}\right)$, and $\partial_{p}^{j, i}$ is 1 if $\tau_{j} \in \partial_{p} \sigma_{i}$ and 0 otherwise.

- With that, we can express the boundary operator ∂_{p} in matrix form.
$\partial_{p} c=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n_{p-1}}\end{array}\right], \quad \partial_{p}=\left[\begin{array}{cccc}\partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1, n_{p}} \\ \partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2, n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p}^{n_{p-1}, 0} & \partial_{p}^{n_{p-1}, 2} & \cdots & \partial_{p}^{n_{p-1}, n_{p}}\end{array}\right], \quad c=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n_{p}}\end{array}\right]$

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\left\{\sigma_{i}\right\}_{i}$ and $\left\{\tau_{j}\right\}_{j}$ denote the p-simplices and ($p-1$)-simplices of K.
- The boundary of a p-chain $c=\sum_{i} a_{i} \sigma_{i}$ is the $(p-1)$-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i}=\sum_{i} a_{i} \sum_{j} \partial_{p}^{j, i} \tau_{j}=\sum_{j} b_{j} \tau_{j},
$$

where $b_{i}=\sum_{i}\left(a_{i} \partial_{p}^{j, i}\right)$, and $\partial_{p}^{j, i}$ is 1 if $\tau_{j} \in \partial_{p} \sigma_{i}$ and 0 otherwise.

- With that, we can express the boundary operator ∂_{p} in matrix form.
$\partial_{p} c=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n_{p-1}}\end{array}\right], \quad \partial_{p}=\left[\begin{array}{cccc}\partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1, n_{p}} \\ \partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2, n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p}^{n_{p-1}, 0} & \partial_{p}^{n_{p-1}, 2} & \cdots & \partial_{p}^{n_{p-1}, n_{p}}\end{array}\right], \quad c=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n_{p}}\end{array}\right]$

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\left\{\sigma_{i}\right\}_{i}$ and $\left\{\tau_{j}\right\}_{j}$ denote the p-simplices and ($p-1$)-simplices of K.
- The boundary of a p-chain $c=\sum_{i} a_{i} \sigma_{i}$ is the $(p-1)$-chain

$$
\partial_{p} c=\partial_{p}\left(\sum_{i} a_{i} \sigma_{i}\right)=\sum_{i} a_{i} \partial_{p} \sigma_{i}=\sum_{i} a_{i} \sum_{j} \partial_{p}^{j, i} \tau_{j}=\sum_{j} b_{j} \tau_{j},
$$

where $b_{i}=\sum_{i}\left(a_{i} \partial_{p}^{j, i}\right)$, and $\partial_{p}^{j, i}$ is 1 if $\tau_{j} \in \partial_{p} \sigma_{i}$ and 0 otherwise.

- With that, we can express the boundary operator ∂_{p} in matrix form.

$$
\partial_{p} c=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n_{p-1}}
\end{array}\right], \quad \partial_{p}=\left[\begin{array}{cccc}
\partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1, n_{p}} \\
\partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2, n_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{p}^{n_{p-1}, 0} & \partial_{p}^{n_{p-1}, 2} & \cdots & \partial_{p}^{n_{p-1}, n_{p}}
\end{array}\right], \quad c=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n_{p}}
\end{array}\right]
$$

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1 -chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Figure from Wikipedia [18]

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$.

Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_{p} c=\emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_{p} \circ \partial_{p+1}=0$. The fundamental lemma of homology!

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$.
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$.
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$.
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$.
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_{p} and all p-boundaries by B_{p}.
- As the boundary map commutes with addition, Z_{p} is a subgroup of C_{p}.
- Likewise, B_{p} is a subgroup of Z_{p}.
- For any p-cycle $\alpha \in Z_{p}$ and a p-boundary β, we get that $\alpha+\beta \in Z_{p}$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha^{\prime} \in Z_{p}$ whenever $\alpha^{\prime}=\alpha+\beta$ for some $\beta \in B_{p}$.
- The equivalence relation partitions Z_{p} into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_{p} / B_{p} of the elements in Z_{p} modulo the elements in B_{p}.

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Homology

Algebra III

- Take a group (A, \bullet).
- The order of the group is the cardinality of A.
- The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_{p} or Z_{p}
- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the p-th homology group as $H_{p}=Z_{p} / B_{p}$.
- The rank of H_{p} is known as the p-th Betti number β_{p}

$$
\beta_{p}=\operatorname{rank} H_{p}=\operatorname{rank} Z_{p}-\operatorname{rank} B_{p} .
$$

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$.

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, $\operatorname{rank} C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$.

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\operatorname{Ker}(T)$ of all vectors v such that $T(v)=0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image}(T)+\operatorname{dim} \operatorname{Ker}(T)
$$

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$.

Rank-Nullity

In the Context of Homology

- Z_{p} is the kernel of ∂_{p}, while B_{p-1} is its image.
- Hence, rank $C_{p}=\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}$.

The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler's polyhedron formula, we may write

$$
\begin{aligned}
\chi & =\sum_{p \geq 0}(-1)^{p} \operatorname{rank} C_{p} \\
& =\sum_{p \geq 0}(-1)^{p}\left(\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}\right) \\
& =\sum_{p \geq 0}(-1)^{p}\left(\operatorname{rank} Z_{p}-\operatorname{rank} B_{p}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \beta_{p} .
\end{aligned}
$$

(we skip some technicalities underlying the substitution highlighted in red)
Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.

The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler's polyhedron formula, we may write

$$
\begin{aligned}
\chi & =\sum_{p \geq 0}(-1)^{p} \operatorname{rank} C_{p} \\
& =\sum_{p \geq 0}(-1)^{p}\left(\operatorname{rank} Z_{p}+\operatorname{rank} B_{p-1}\right) \\
& =\sum_{p \geq 0}(-1)^{p}\left(\operatorname{rank} Z_{p}-\operatorname{rank} B_{p}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \beta_{p} .
\end{aligned}
$$

(we skip some technicalities underlying the substitution highlighted in red)
Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.

Matrix Reduction

Rank Computations

- To compute β_{p} as the difference between rank Z_{p} and rank B_{p} we work with the matrix representation of the boundary map ∂_{p}.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of Gaussian elimination is used to get the Smith normal form.

Matrix Reduction

Rank Computations

- To compute β_{p} as the difference between rank Z_{p} and rank B_{p} we work with the matrix representation of the boundary map ∂_{p}.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of Gaussian elimination is used to get the Smith normal form.

Matrix Reduction

Rank Computations

- To compute β_{p} as the difference between rank Z_{p} and rank B_{p} we work with the matrix representation of the boundary map ∂_{p}.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of Gaussian elimination is used to get the Smith normal form.

Induced Maps on Homology

$$
\begin{aligned}
& \ldots \xrightarrow{\partial_{x}} C_{p+1}(\hat{X}) \xrightarrow{\partial_{x}} C_{p}(\hat{X}) \xrightarrow{\partial_{x}} C_{p-1}(\hat{X}) \xrightarrow{\partial_{x}} \ldots \\
& \text { 縕 } \\
& \ldots \xrightarrow{\partial_{\gamma}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_{\hat{\gamma}}} C_{p}(\hat{Y}) \xrightarrow{\partial_{\hat{\gamma}}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} \ldots
\end{aligned}
$$

Functoriality

- A simplicial map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_{\#}: C_{p}(\hat{X}) \rightarrow C_{p}(\hat{Y})$, as shown in the diagram.
- As $\hat{f}_{\#}$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.
- Hence, $\hat{f}_{\#}$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}): H_{p}(\hat{X}) \rightarrow H_{p}(\hat{Y})$.

Induced Maps on Homology

$$
\begin{aligned}
& \ldots \xrightarrow{\partial_{x}} C_{p+1}(\hat{X}) \xrightarrow{\partial_{x}} C_{p}(\hat{X}) \xrightarrow{\partial_{x}} C_{p-1}(\hat{X}) \xrightarrow{\partial_{\hat{x}}} \ldots \\
& \downarrow \hat{f}_{\#} \quad \downarrow \hat{f}_{\#} \quad \downarrow \hat{f}_{\#} \\
& \ldots \xrightarrow{\partial_{\gamma}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} C_{p}(\hat{Y}) \xrightarrow{\partial_{\gamma}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} \ldots
\end{aligned}
$$

Functoriality

- A simplicial map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_{\#}: C_{p}(\hat{X}) \rightarrow C_{p}(\hat{Y})$, as shown in the diagram.
- As $\hat{f}_{\#}$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.
- Hence, $\hat{f}_{\#}$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}): H_{p}(\hat{X}) \rightarrow H_{p}(\hat{Y})$.

Induced Maps on Homology

$$
\begin{aligned}
& \ldots \xrightarrow{\partial_{x}} C_{p+1}(\hat{X}) \xrightarrow{\partial_{x}} C_{p}(\hat{X}) \xrightarrow{\partial_{x}} C_{p-1}(\hat{X}) \xrightarrow{\partial_{\hat{x}}} \ldots \\
& \text { 的 } \\
& \ldots \xrightarrow{\partial_{\gamma}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_{\hat{\gamma}}} C_{p}(\hat{Y}) \xrightarrow{\partial_{\hat{\gamma}}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} \ldots
\end{aligned}
$$

Functoriality

- A simplicial map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_{\#}: C_{p}(\hat{X}) \rightarrow C_{p}(\hat{Y})$, as shown in the diagram.
- As $\hat{f}_{\#}$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.
- Hence, $\hat{f}_{\#}$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}): H_{p}(\hat{X}) \rightarrow H_{p}(\hat{Y})$.

Induced Maps on Homology

$$
\begin{aligned}
& \ldots \xrightarrow{\partial_{x}} C_{p+1}(\hat{X}) \xrightarrow{\partial_{x}} C_{p}(\hat{X}) \xrightarrow{\partial_{x}} C_{p-1}(\hat{X}) \xrightarrow{\partial_{\hat{x}}} \ldots \\
& l_{n}^{f_{n}} \\
& \ldots \xrightarrow{\partial_{\gamma}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} C_{p}(\hat{Y}) \xrightarrow{\partial_{\hat{\gamma}}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_{\gamma}} \ldots
\end{aligned}
$$

Functoriality

- A simplicial map $\hat{f}_{\Delta}: \hat{X} \rightarrow \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_{\#}: C_{p}(\hat{X}) \rightarrow C_{p}(\hat{Y})$, as shown in the diagram.
- As $\hat{f}_{\#}$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.
- Hence, $\hat{f}_{\#}$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}): H_{p}(\hat{X}) \rightarrow H_{p}(\hat{Y})$.

Applications of $H(\hat{f}): H_{p}(\hat{X}) \rightarrow H_{p}(\hat{Y})$

Indirect Inference

If a map $f: Y_{1} \rightarrow Y_{2}$ factors through $f_{1}: Y_{1} \rightarrow X$ and $f_{2}: X \rightarrow Y_{2}$ such that $f=f_{2} \circ f_{1}$, then we can infer the homology groups of X using knowledge of the homology groups of Y_{1} and Y_{2}.

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

Brouwer's Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is continuous and has no fixed point.
- Define $r: \mathbb{D} \rightarrow \partial \mathbb{D}$ as the intersection of the ray form x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
- $H_{1}(\partial \mathbb{D}) \cong \mathbb{F}_{2}$ while $H_{1}(\mathbb{D})=0$.
- But then, $H(r) \circ H(\iota) \neq \mathrm{Id}$. A contradiction!

But, how do we get triangulations in the first place?

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

The Cêch Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^{d}.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

But, how do we choose the radii of the balls?

Scale and Persistence

Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r=0$ to $r=\infty$.
- Each topological feature will be present over an interval $[a, b)$.

Scale and Persistence

Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r=0$ to $r=\infty$.
- Each topological feature will be present over an interval $[a, b)$.

Scale and Persistence

Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r=0$ to $r=\infty$.
- Each topological feature will be present over an interval $[a, b)$.

Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval $[a, b)$.
- Define the persistence of the feature as $b-a$.
- Features of high persistence are salient, while noise has low persistence.

Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval $[a, b)$.
- Define the persistence of the feature as $b-a$.
- Features of high persistence are salient, while noise has low persistence.

Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval $[a, b)$.
- Define the persistence of the feature as $b-a$.
- Features of high persistence are salient, while noise has low persistence.

Summary

$$
\begin{gathered}
\partial_{p}=\left[\begin{array}{cccc}
\partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1, n_{p}} \\
\partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2, n_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{p}^{n_{p}-1,0} & \partial_{p}^{n_{p-1,1,2}^{2}} & \cdots & \partial_{p}^{n_{p}-1, n_{p}}
\end{array}\right] \\
H_{p}=Z_{p} / B_{p}
\end{gathered}
$$

Main Concepts Introduced

- Continuous deformations
- Simplicial approximations
- Chain algebra and homology
- Functoriality

Summary

Key Concepts Missing

- Persistent homology
- Persistence diagrams and barcodes
- Simplicial collapses
- Sparse filtrations and interleaving

