
CMSC 330: Organization of Programming
Languages

Type-Safe, Low-level Programming with
Rust

CMSC 330 Spring 2021

Type Safety in Programming Languages

• In a type-safe language, the type system enforces well
defined behavior. Formally, a language is type-safe iff

G ⊢ e : t and G ⊢ A implies
A; e ⇒ v and ⊢ v : t or that e runs forever

• A; e ⇒ v says e evaluates v under environment A
• G ⊢ e : t says e has type t under type environment G
• G ⊢ A says A is compatible with G

– For all x, A(x) = v implies G(x) = t and ⊢ v : t

CMSC 330 - Spring 2021

C/C++: Not Type-Safe – Spatially Unsafe

G ⊢ e : t and G ⊢ A implies
A; e ⇒ v and ⊢ v : t or that e runs forever

Type safety is violated by buffer overflows
int main() {
int x = 1, *p = &x;
int y = 0, *q = &y;
*(q+1) = 5; // overwrites p
return *p; // crash

}

CMSC 330 - Spring 2021

C/C++: Not Type-Safe – Temporally Unsafe

and dangling pointers (uses of pointers to freed memory)
{ int *x = ...malloc();
free(x);
x = 5; / oops! */

}

… which can happen via the stack, too:
int *foo(void) { int z = 5; return &z; }
void bar(void) {
int *x = foo();
x = 5; / oops! */

}

CMSC 330 - Spring 2021

Automatic Memory Management

• Data may be allocated explicitly or implicitly. Data
reclamation occurs automatically: No manual free

• A garbage collector traces pointers in use by the program,
starting from the stack and global variables
– Retains those objects it can reach (since could be used later)
– Reclaims those it cannot

• Related technique: Reference counting

• Both impose space and run-time costs

CMSC 330 - Spring 2021

6

Memory Management in (Type-Safe) OCaml

• Local variables live on the stack
• Tuples, closures, and constructed types live on the heap

let x = (3, 4) (* heap-allocated *)
let f x y = x + y in f 3

(* result heap-allocated *)
type ‘a t = None | Some of ‘a
None (* not on the heap–just a primitive *)
Some 37 (* heap-allocated *)

• Heap data reclaimed via garbage collection

In sum: What choice do programmers have?

C/C++
• Type-unsafe

• Low level control
• Performance over safety and

ease of use
• Manual memory management,

e.g., with malloc/free

Java, OCaml, Go, Ruby…
• Type safe

• High level, less control
• Ease-of-use and safety over

performance
• Automatic memory

management via garbage
collection
• No explicit malloc/free

CMSC 330 Spring 2021

Something in between … ?

Rust: Type-safe (and Thread-safe), and Fast
• A Mozilla-sponsored, public

project since 2010
– Started in 2006 by Graydon

Hoare while at Mozilla

• Most loved programming
language in Stack Overflow
annual surveys every year
from 2016 through 2020

• Key properties: Type safety,
and no data races, despite use
of concurrency and manual
memory management

CMSC 330 Spring 2021

Rust in the Real World
• Firefox Quantum and Servo components

– https://servo.org
• REmacs port of Emacs to Rust

– https://github.com/Wilfred/remacs
• Amethyst game engine

– https://www.amethyst.rs/
• Magic Pocket filesystem from Dropbox

– https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

• OpenDNS malware detection components
• https://www.rust-lang.org/en-US/friends.html
CMSC 330 Spring 2021

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Features of Rust
• Lifetimes and Ownership

– Key feature for ensuring safety
• Traits as core of object(-like) system
• Variable default is immutability
• Data types and pattern matching
• Type inference

– No need to write types for local variables
• Generics (aka parametric polymorphism)
• First-class functions
• Efficient C bindings

CMSC 330 Spring 2021

Takes ideas from
functional and OO
languages, and
recent research

Installing Rust

• Instructions, and stable installers, here:

• On a Mac or Linux (VM), open a terminal and run

• On Windows, download+run rustup-init.exe

https://www.rust-lang.org/en-US/install.html

curl https://sh.rustup.rs -sSf | sh

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC 330 Spring 2021

Rust Compiler, Build System

• Rust programs can be compiled using rustc
– Source files end in suffix .rs
– Compilation, by default, produces an executable

• No –c option

• Preferred: Use the cargo package manager
– Will invoke rustc as needed to build files
– Will download and build dependencies
– Based on a .toml file and .lock file

• You won’t have to mess with these for this class
– Like ocamlbuild or dune

CMSC 330 Spring 2021

Using cargo
• Make a project, build it, run it

% cargo new hello_cargo --bin
% cd hello_cargo
% ls
Cargo.toml src/
% ls src
main.rs
% cargo build
Compiling hello_cargo v0.1.0 (file:///…)
Finished dev [unoptimized + debuginfo] …
% ./target/debug/hello_cargo
Hello, world!

fn main() {
println!("Hello, world!”)

}

More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.htmlCMSC 330 Spring 2021

Use cargo to run tests,
too; will discuss later

Uses rustc, the
Rust compiler

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, Interactively

• Rust has no top-level a
la OCaml or Ruby

• There is an in-browser
execution environment
– https://play.rust-lang.org/

CMSC 330 Spring 2021

Rust Documentation
• Rust documentation is a good

reference, and way to learn
– https://doc.rust-

lang.org/stable/

• This contains links to
– the Rust Book (on which

most of our slides are
based)

– the reference manual, and
– short manuals on the

compiler, cargo, and more

CMSC 330 Spring 2021

https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 Spring 2021

Functions

// comment
fn main() {

println!(“Hello, world!”);
}

Hello, world!

CMSC 330 Spring 2021

Let Statements
{
let x = 37;
let y = x + 5;
y

}//42

{
let x = 37;
let x = x + 5;
x

}//42

{
let x = 37;
x = x + 5;//err
x

}

{
let mut x = 37;
x = x + 5;
x

}//42

{ //err:
let x:u32 = -1;
let y = x + 5;
y

}

{
let x:i16 = -1;
let y:i16 = x+5;
y

}//4

Redefining a
variable shadows
it (like OCaml);
aim to avoid

Variables
immutable by
default; use mut
to allow updates

Types inferred by
default; optional
annotations must be
consistent (may
override defaults)CMSC 330 Spring 2021

Conditionals

fn main() {
let n = 5;
if n < 0 {
print!("{} is negative", n);

} else if n > 0 {
print!("{} is positive", n);

} else {
print!("{} is zero", n);

}
}

5 is positive

CMSC 330 Spring 2021

Conditionals are Expressions (like OCaml)

fn main() {
let n = 5;
let x = if n < 0 {

10
} else {

"a"
};
print!("{:?}|",x);

}

Type error

CMSC 330 Spring 2021

Factorial in Rust (recursively)
fn fact(n:i32) -> i32
{

if n == 0 { 1 }
else {

let x = fact(n-1);
n * x

}
}

fn main() {
let res = fact(6);
println!(“fact(6) = {}”,res);

}

fact(6) = 720
CMSC 330 Spring 2021

A. 6
B. 7
C. 5
D. Error

{ let x = 6;
let y = "hi";
if x == 5 { y } else { 5 };
7

}

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

A. 6
B. 7
C. 5
D. Error – if and else have incompatible types

{ let x = 6;
let y = "hi";
if x == 5 { y } else { 5 };
7

}

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

A. 6
B. true
C. false
D. error

{ let x = 6;
let y = 4;
y = x;
x == y

}

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

A. 6
B. true
C. false
D. error – y is immutable

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

{ let x = 6;
let y = 4;
y = x;
x == y

}

Using Mutation

• Mutation is useful when performing iteration
– As in C and Java

infinite loop
(break out)

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;
loop {

if x <= 1 { break; }
a = a * x;
x = x - 1;

}
a

}

CMSC 330 Spring 2021

Other Looping Constructs

• While loops
– while e block

• For loops
– for pat in e block

• More later – e.g., for iterating through collections

for x in 0..10 {
println!("{}", x); // x: i32

}

CMSC 330 Spring 2021

Other Looping Constructs
• These (and loop) are expressions

– They return the final computed value
• unit, if none

– break may take an expression, which is the loop’s final value

let mut x = 5;
let y = loop {
x += x - 3;
println!("{}", x);// 7 11 19 35
x % 5 == 0 { break x; }

};
print!("{}",y); //35

CMSC 330 Spring 2021

A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {
let x = x + 1;

}
x

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

Quiz: What does this evaluate to?

CMSC 330 Spring 2021

A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {
let x = x + 1;

}
x

Data: Scalar Types

• Integers
– i8, i16, i32, i64, isize
– u8, u16, u32, u64, usize

• Characters (unicode)
– char

• Booleans
– bool = { true, false }

• Floating point numbers
– f32, f64

• Note: arithmetic operators (+, -, etc.) overloaded
CMSC 330 Spring 2021

Defaults (from inference)

Machine word size

Compound Data: Tuples
• Tuples

– n-tuple type (t1,…,tn)
• unit () is just the 0-tuple

– n-tuple expression(e1,…,en)
– Accessed by pattern matching or like a record field

let tuple = ("hello", 5, 'c');
assert_eq!(tuple.0, "hello");
let(x,y,z) = tuple;

CMSC 330 Spring 2021

fn dist(s:(f64,f64),e:(f64,f64)) -> f64 {
let (sx,sy) = s;
let ex = e.0;
let ey = e.1;
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

Compound Data: Tuples
Distance between two points s and e

CMSC 330 Spring 2021

fn dist2((sx,sy):(f64,f64),(ex,ey):(f64,f64)) -> f64 {
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

Compound Data: Tuples
Can include patterns in parameters directly, too

We’ll see Rust structs later. They generalize tuples.

CMSC 330 Spring 2021

Arrays: Standard Operations

• Creating an array (can be mutable or not)
– But must be of fixed length

• Indexing an array
• Assigning at an array index

CMSC 330 Spring 2021

let nums = [1,2,3]; // type is [i32;3]
let strs = ["Monday","Tuesday","Wednesday"]; //[&str;3]
let x = nums[0]; // 1
let s = strs[1]; // "Tuesday"
let mut xs = [1,2,3];
xs[0] = 1; // OK, since xs mutable
let i = 4;
let y = nums[i]; //fails (panics) at run-time

Arrays: Iteration

• Rust provides a way to iterate over a collection
– Including arrays

– a.iter() produces an iterator, like a Java iterator
• This is a method call, a la Java. More about these later

– The special for syntax issues the .next() call until no
elements are left

• No possibility of running out of bounds

CMSC 330 Spring 2021

let a = [10,20,30,40,50];
for element in a.iter() {
println!("the value is: {}", element);

}

fn f(n:[u32]) -> u32 {
n[0]

}

Quiz: Will this function type check?

A. Yes
B. No

CMSC 330 Spring 2021

A. Yes
B. No – because

array length not
known. Need to
fill in len

fn f(n:[u32;len]) -> u32 {
n[0]

}

Quiz: Will this function type check?

CMSC 330 Spring 2021

39

Testing

• In any language, there is the need to test code
• In most languages, testing requires extra libraries:

– Minitest in Ruby
– Ounit in Ocaml
– Junit in Java

• Testing in Rust is a first-class citizen!
– The testing framework is built into cargo

Unit Testing In Rust

• Unit testing is for local or private functions
• Put such tests in the same file as your code

• Use assert! to test that something is true
• Use assert_eq! to test that two things that implement

the PartialEq trait are equal
• E.g., integers, booleans, etc.
• We’ll explain traits later on

Unit Testing In Rust

fn bad_add(a: i32, b: i32) -> i32 {
a - b

}

#[cfg(test)]
mod tests {
#[test]
fn test_bad_add() {
assert_eq!(bad_add(1,2),3);

}
}

Indicates that
this module
contains tests

Indicates
that this
function is
a test

This is a
module,
tests

Integration Testing In Rust

• Integration testing is for APIs and whole programs

• Create a tests directory
• Create different files for testing major functionality
• Files don’t need #[cfg(test)] or a special module

– But they do still need #[test] around each function
• Tests refer to code as if it were an external library

– Declare it as an external library using extern crate
– Include the functionality you want to test with use

Integration Testing In Rust

pub fn add(a: i32, b: i32) -> i32 {
a + b

}

src/lib.rs

extern crate my-project-name;
use my-project-name::add;
#[test]
pub fn test_add() {

assert_eq!(add(1,2), 3));
}
#[test]
pub fn test_negative_add() {

assert_eq!(add(1,-2), -1));
}

tests/test_add.rs

Running Tests
• cargo test runs all of your tests
• cargo test s runs all tests that contain s in the name
• By default, console output is hidden

• Use cargo test -- --nocapture to un-hide it

Fun Fact

• The original Rust compiler was written in OCaml
– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust
– How is this possible? Through a process called bootstrapping:

• The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

• Now we can use the binary from the Rust compiler to compile itself
• We discard the OCaml compiler and just keep updating the binary through

self-compilation
• So don’t lose that binary! J

CMSC 330 Spring 2021

