CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
- I.e., whether s is a member of R 's language
- Approach to come: Convert R to a finite automaton FA and see whether s is accepted by FA
- Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
> which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
- Exactly one sequence of steps for each string
> Easy to implement acceptance check
- (Almost) all examples so far
- Nondeterministic Finite Automata (NFA)
- May have many sequences of steps for each string
- Accepts if any path ends in final state at end of string
- More compact than DFA
> But more expensive to test whether a string matches

Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
- I.e., transition function must be a valid function
- DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
- May move to new state without consuming character

ε-transition
- DFA transition must be labeled with symbol
- A DFA is a specific kind of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ba
- Has paths to either S0 or S1
- Neither is final, so rejected
- babaabb
- Has paths to different states
- One path leads to S3, so accepts string

NFA for (ab|aba)*

- aba
- ababa
- Has paths to states S0, S1

- Need to use ε-transition

NFA and DFA for (ab|aba)*

Quiz 1: Which string is NOT accepted by this NFA?

A. $a b$
B. abaa
c. $a b a b$
D. abaab

Quiz 1: Which string is NOT accepted by this NFA?

A. $a b$
в. abaa
c. abab
D. abaab

Formal Definition

- A deterministic finite automaton (DFA) is a

5 -tuple ($\Sigma, Q, q_{0}, F, \delta$) where

- Σ is an alphabet
- \mathbf{Q} is a nonempty set of states
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
- $F \subseteq Q$ is the set of final states
- $\delta: Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
> What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

- $\Sigma=\{0,1\}$
- $\mathrm{Q}=\{\mathrm{S} 0, \mathrm{~S} 1\}$
- $\mathrm{q}_{0}=\mathrm{SO}$
- $F=\{S 1\}$
- $\delta=$

	symbol	
	0	1
S 0	S 0	S 1
S 1	S 0	S 1

or as $\left\{\begin{array}{r}(\mathrm{S} 0,0, \mathrm{~S} 0), \\ (\mathrm{S} 0,1, \mathrm{~S} 1), \\ (\mathrm{S} 1,0, \mathrm{~S} 0), \\ (\mathrm{S} 1,1, \mathrm{~S} 1)\}\end{array}\right.$

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

 1

```
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
                default: printf("rejected\n"); return 0;
            }
            break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default: printf("rejected\n"); return 0;
            }
            break;
        default: printf("unknown state; I'm confused\n");
        break;
    }
}
```


Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components ( }\Sigma,Q,\mp@subsup{q}{0}{},F,\delta)\mathrm{ of a DFA:
let q = qo
while (there exists another symbol \sigma of the input string)
    q := \delta(q, \sigma);
if q}\inF\mathrm{ then
    accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple ($\left.\Sigma, \mathrm{Q}, \mathrm{q}_{0}, \mathrm{~F}, \delta\right)$ where
- $\Sigma, \mathrm{Q}, \mathrm{q} 0, \mathrm{~F}$ as with DFAs
- $\delta \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times Q$ specifies the NFA's transitions

- $\Sigma=\{a\}$
- $Q=\{S 1, S 2, S 3\}$
- $\mathrm{q}_{0}=\mathrm{S} 1$
- $F=\{S 3\}$
- $\delta=\{(S 1, a, S 1),(S 1, a, S 2),(S 2, \varepsilon, S 3)\}$

Example

- An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
- NFA must keep track of several "current states"
> Due to multiple transitions with same label, and ε-transitions
- If any current state is final when done then accept s
- Example
- After processing "a"
> NFA may be in states
S1
S2

S3
> Since S 3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them

NB. Both transform and reduce are historical terms; they mean "convert"

Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: <A> = $\left(\Sigma, Q, q_{0}, F, \delta\right)$
- Remember regular expressions are defined recursively from primitive RE languages
- Invariant: |F| = 1 in our NFAs
> Recall F = set of final states
- Will define <A> for base cases: $\sigma, \varepsilon, \emptyset$
- Where σ is a symbol in Σ
- And for inductive cases: $A B, A \mid B, A^{*}$

Reducing Regular Expressions to NFAs

- Base case: σ

Recall: NFA is $\left(\Sigma, Q, q_{0}, F, \delta\right)$ where
Σ is the alphabet
Q is set of states
q_{0} is starting state
F is set of final states
$\bar{\delta}$ is transition relation
$<\sigma>=(\{\sigma\},\{S 0, S 1\}, S 0,\{S 1\},\{(S 0, \sigma, S 1)\})$

| Σ, \quad | Q | $q_{0}, \quad F$, | δ |
| :---: | :---: | :---: | :---: | :---: |

Reduction

- Base case: ε

Recall: NFA is $\left(\Sigma, Q, q_{0}, F, \delta\right)$ where
Σ is the alphabet
Q is set of states
q_{0} is starting state
F is set of final states
$\bar{\delta}$ is transition relation

- Base case: Ø

$$
<\emptyset>=(\emptyset,\{S 0, S 1\}, S 0,\{S 1\}, \varnothing)
$$

Reduction: Concatenation

- Induction: $A B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$

Reduction: Concatenation

- Induction: $A B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$
- $\langle A B\rangle=\left(\Sigma_{A} \cup \Sigma_{B}, Q_{A} \cup Q_{B}, q_{A},\left\{f_{B}\right\}, \delta_{A} \cup \delta_{B} \cup\left\{\left(f_{A}, \varepsilon, q_{B}\right)\right\}\right)$

Reduction: Union

- Induction: $A \mid B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$

Reduction: Union

- Induction: $A \mid B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$
- $\langle A \mid B\rangle=\left(\Sigma_{A} \cup \Sigma_{B}, Q_{A} \cup Q_{B} \cup\{S 0, S 1\}, S 0,\{S 1\}\right.$,

$$
\left.\delta_{A} \cup \delta_{B} \cup\left\{\left(S 0, \varepsilon, q_{A}\right),\left(S 0, \varepsilon, q_{B}\right),\left(f_{A}, \varepsilon, S 1\right),\left(f_{B}, \varepsilon, S 1\right)\right\}\right)
$$

Reduction: Closure

- Induction: A^{*}

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$

Reduction: Closure

- Induction: A^{*}

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\left\langle A^{*}\right\rangle=\left(\Sigma_{A}, Q_{A} \cup\{S 0, S 1\}, S 0,\{S 1\}\right.$,

$$
\left.\delta_{A} \cup\left\{\left(f_{A}, \varepsilon, S 1\right),\left(S 0, \varepsilon, q_{A}\right),(S 0, \varepsilon, S 1),(S 1, \varepsilon, S 0)\right\}\right)
$$

Quiz 2: Which NFA matches a*?

Quiz 2: Which NFA matches a*?

Quiz 3: Which NFA matches a|b*?

Quiz 3: Which NFA matches a|b*?

Recap

- Finite automata
- Alphabet, states...
- $\left(\Sigma, Q, q_{0}, F, \delta\right)$
- Types
- Deterministic (DFA)

- Non-deterministic (NFA)

- Reducing RE to NFA
- Concatenation

- Union
- Closure

Reduction Complexity

- Given a regular expression A of size n...

Size = \# of symbols + \# of operations

- How many states does <A> have?
- Two added for each \|, two added for each *
- O(n)
- That's pretty good!

Reducing NFA to DFA

Why NFA \rightarrow DFA

- DFA is generally more efficient than NFA

Language: (a|b)*ab

Why NFA \rightarrow DFA

- DFA has the same expressive power as NFAs.
- Let language $L \subseteq \Sigma^{*}$, and suppose L is accepted by NFA $N=(\Sigma$, $\left.Q, q_{0}, F, \delta\right)$. There exists a DFA $D=\left(\Sigma, Q^{\prime}, q^{\prime}, F^{\prime}, \delta^{\prime}\right)$ that also accepts L. $(\mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{D}))$
- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA \leftrightarrow DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
- By explicitly tracking the set of NFA states
- Intuition
- Build DFA where
> Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
- DFA state is a subset of set of all NFA states
- Algorithm
- Input
$>\operatorname{NFA}\left(\Sigma, Q, q_{0}, F_{n}, \delta\right)$
- Output
$>\operatorname{DFA}\left(\Sigma, R, r_{0}, F_{d}, \delta\right)$
- Using two subroutines
> ε-closure (δ, p) (and ε-closure (δ, Q))
> move($\delta, \mathrm{p}, \sigma)($ and $\operatorname{move}(\delta, Q, \sigma))$
- (where p is an NFA state)

ε-transitions and ε-closure

- We say $p \xrightarrow{\varepsilon} q$
- If it is possible to go from state p to state q by taking only ε transitions in δ
- If $\exists \mathrm{p}, \mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{n}}, \mathrm{q} \in \mathrm{Q}$ such that
$>\left\{p, \varepsilon, p_{1}\right\} \in \delta,\left\{p_{1}, \varepsilon, p_{2}\right\} \in \delta, \ldots,\left\{p_{n}, \varepsilon, q\right\} \in \delta$
- ε-closure (δ, p)
- Set of states reachable from p using ε-transitions alone
> Set of states q such that $p \xrightarrow{\varepsilon} q$ according to δ
$>\varepsilon$-closure $(\delta, p)=\{q \mid p \xrightarrow{\varepsilon} q$ in $\delta\}$
$>\varepsilon$-closure $(\delta, Q)=\{q \mid p \in Q, p \xrightarrow{\varepsilon} q$ in $\delta\}$
- Notes
> ε-closure(δ, p) always includes p
$>$ We write ε-closure (p) or ε-closure (Q) when δ is clear from context

ε-closure: Example 1

- Following NFA contains

```
- \(\mathrm{p} 1 \xrightarrow{\varepsilon} \mathrm{p} 2\)
- p2 \(\xrightarrow{\varepsilon}\) p3
- p1 \(\xrightarrow{\varepsilon}\) p3
> Since \(\mathrm{p} 1 \xrightarrow{\varepsilon} \mathrm{p} 2\) and \(\mathrm{p} 2 \xrightarrow{\varepsilon} \mathrm{p} 3\)
```


a

- ε-closures
- ε-closure(p1) =
\{ p1, p2, p3 \}
- ε-closure(p2) =
- ε-closure(p3) =
- ε-closure(\{ p1, p2 \}) =
\{ p2, p3 \}
\{ p3 \}
$\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\} \cup\{\mathrm{p} 2, \mathrm{p} 3\}$

ε-closure: Example 2

- Following NFA contains
- p1 $\xrightarrow{\varepsilon}$ p3
- $p 3 \xrightarrow{\varepsilon} p 2$
- $\mathrm{p} 1 \xrightarrow{\varepsilon} \mathrm{p} 2$
> Since $\mathrm{p} 1 \xrightarrow{\varepsilon} \mathrm{p} 3$ and $\mathrm{p} 3 \xrightarrow{\varepsilon} \mathrm{p} 2$
- ε-closures
- ε-closure(p1) =
\{ p1, p2, p3 \}
- ε-closure(p2) =
\{ p2 \}
- ε-closure(p3) =
\{ p2, p3 \}
- ع-closure(\{ p2,p3 \}) =
$\{\mathrm{p} 2\} \cup\{\mathrm{p} 2, \mathrm{p} 3\}$

ε-closure Algorithm: Approach

- Input: $\quad \operatorname{NFA}\left(\Sigma, Q, q_{0}, F_{n}, \delta\right)$, State Set R
- Output: State Set R'
- Algorithm

```
Let R' = R // start states
Repeat
    Let \(R=R\) ' // continue from previous
    Let \(R^{\prime}=R \cup\{q \mid p \in R,(p, \varepsilon, q) \in \delta\} \quad / /\) new \(\varepsilon\)-reachable states
Until R = R'
// stop when no new states
```

This algorithm computes a fixed point

ع-closure Algorithm Example

- Calculate ε-closure($\delta,\{p 1\}$)

R	R^{\prime}
$\{p 1\}$	$\{p 1\}$
$\{p 1\}$	$\{p 1, p 2\}$
$\{p 1, p 2\}$	$\{p 1, p 2, p 3\}$
$\{p 1, p 2, p 3\}$	$\{p 1, p 2, p 3\}$

Calculating move(p, σ)

- move(ס,p,o)
- Set of states reachable from p using exactly one transition on symbol σ
> Set of states q such that $\{p, \sigma, q\} \in \delta$
$>\operatorname{move}(\delta, p, \sigma)=\{q \mid\{p, \sigma, q\} \in \delta\}$
$>\operatorname{move}(\delta, Q, \sigma)=\{q \mid p \in Q,\{p, \sigma, q\} \in \delta\}$
- i.e., can "lift" move() to a set of states Q
- Notes:
> move $(\bar{\delta}, p, \sigma)$ is \varnothing if no transition $(p, \sigma, q) \in \delta$, for any q
> We write move (p, σ) or move (R, σ) when δ clear from context

move(p, σ) : Example 1

- Following NFA
- $\Sigma=\{a, b\}$
- Move
- move(p1, a) $=\{$ p2, p3 \}
- $\operatorname{move}(p 1, b)=\quad \varnothing$
- move(p2, a) =
\varnothing

$$
\operatorname{move}(\{p 1, p 2\}, b)=\{p 3\}
$$

- move(p2, b) =
\{ p3 \}
- move(p3, a) =
\varnothing
- move(p3, b) =
\varnothing

move (p, σ) : Example 2

- Following NFA
- $\Sigma=\{a, b\}$
- Move
- $\operatorname{move}(\mathrm{p} 1, \mathrm{a})=$
- move(p1, b) = \{ p2 \}
- $\operatorname{move}(p 2, a)=\{p 3\}$
- $\operatorname{move}(\mathrm{p} 2, \mathrm{~b})=\quad \varnothing$
- $\operatorname{move}(\mathrm{p} 3, \mathrm{a})=\quad \varnothing$
- $\operatorname{move}(\mathrm{p} 3, \mathrm{~b})=\quad \varnothing$

NFA \rightarrow DFA Reduction Algorithm ("subset")

- Input NFA ($\left.\Sigma, \mathrm{Q}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{n}}, \delta\right)$, Output DFA $\left(\Sigma, \mathrm{R}, \mathrm{r}_{0}, \mathrm{~F}_{\mathrm{d}}, \delta^{\prime}\right)$
- Algorithm

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R
While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\overline{\mathrm{C}}, \mathrm{E})$
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$
// DFA start state
// process DFA state r
// each state visited once
// for each symbol σ
// states reached via σ
// states reached via ε
// if state e is new
// add e to R (unmarked)
// add transition $r \rightarrow e$ on σ
// final if include state in F_{n}

NFA \rightarrow DFA Example

- Start $=\varepsilon$-closure $(\delta, \mathrm{p} 1)=\{\{\mathrm{p} 1, \mathrm{p} 3\}\}$

NFA

- $R=\{\{p 1, p 3\}\}$
- $r \in R=\{p 1, p 3\}$
- move($\overline{\mathrm{C}},\{\mathrm{p} 1, \mathrm{p} 3\}, \mathrm{a})=\{\mathrm{p} 2\}$

$$
\begin{aligned}
& >e=\varepsilon \text {-closure }(\delta,\{p 2\})=\{p 2\} \\
& >R=R \cup\{\{p 2\}=\{\{1, p 3\},\{p 2\}\} \\
& >\delta^{\prime}=\delta^{\prime} \cup\{\{p 1, p 3\}, a,\{p 2\}\}
\end{aligned}
$$

- move($\overline{,},\{p 1, p 3\}, b)=\varnothing$

ε
DFA

NFA \rightarrow DFA Example (cont.)

- $R=\{\{p 1, p 3\},\{p 2\}\}$
- $r \in R=\{p 2\}$
- move($\overline{\text {, }}$, 2 2\},a) $=\varnothing$
- move($\delta,\{p 2\}, b)=\{p 3\}$
> $\mathrm{e}=\varepsilon$-closure $(\delta,\{p 3\})=\{p 3\}$
$>R=R \cup\{\{p 3\}\}=\{\{p 1, p 3\},\{p 2\},\{p 3\}\}$
$>\delta^{\prime}=\delta^{\prime} \cup\{\{p 2\}, b,\{p 3\}\}$

DFA

NFA \rightarrow DFA Example (cont.)

- $R=\{\{p 1, p 3\},\{p 2\},\{p 3\}\}$
- $r \in R=\{p 3\}$
- Move(\{p3\},a) = \varnothing
- Move(\{p3\},b) = Ø

NFA

- Mark \{p3\}, exit loop
- $\mathrm{F}_{\mathrm{d}}=\{\{\mathrm{p} 1, \mathrm{p} 3\},\{\mathrm{p} 3\}\}$
> Since $p 3 \in F_{n}$
- Done!

NFA \rightarrow DFA Example 2

- NFA • DFA

$$
R=\{\{A\},\{B, D\},\{C, D\}\}
$$

Quiz 4: Which DFA is equiv to this NFA?

\square

D. None of the above
b

Quiz 4: Which DFA is equiv to this NFA?

\square

D. None of the above
b

Actual Answer

NFA \rightarrow DFA Example 3

- NFA

- DFA

$$
R=\{\{A, E\},\{B, D, E\},\{C, D\},\{E\}\}
$$

Detailed NFA \rightarrow DFA Example

\longrightarrow Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R

NFA

DFA
$\{A, B, C\}$

While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\mathrm{\delta}, \mathrm{E})$
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

New Start State

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$ Mark r
$\longrightarrow \quad$ For each $\sigma \in \Sigma \quad / / 0$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\bar{\delta}, \mathrm{E})$
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma$
Let $E=\operatorname{move}(\delta, r, \sigma)$
\longrightarrow Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$
Mark r

For each $\sigma \in \Sigma$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\mathrm{\delta}, \mathrm{E})$
If $e \notin R$
Let $R=R \cup\{e\}$
$\longrightarrow \quad$ Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, \mathrm{e}\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R
While \exists an unmarked state $r \in R$
Mark r
$\longrightarrow \quad$ For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\mathrm{\delta}, \mathrm{E})$
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
$\longrightarrow \quad$ Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$
Mark r

$$
\text { For each } \sigma \in \Sigma \quad / / 1
$$

Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\overline{\mathrm{D}, \mathrm{E}}$)
If $e \notin R$
Let $R=R \cup\{e\}$
$\longrightarrow \quad$ Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, \mathrm{e}\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R \longrightarrow While \exists an unmarked state $r \in R$

Mark r

$$
\text { For each } \sigma \in \Sigma \quad / / 1
$$

Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$ Mark r
$\longrightarrow \quad$ For each $\sigma \in \Sigma \quad / / 0$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure($\mathrm{\delta}, \mathrm{E}$)
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$ Mark r
For each $\sigma \in \Sigma \quad / / 0$
Let $E=\operatorname{move}(\delta, r, \sigma)$
\longrightarrow Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	

Detailed NFA \rightarrow DFA Example

$$
\begin{gathered}
\text { Let } r_{0}=\varepsilon \text {-closure }\left(\delta, q_{0}\right) \text {, add it to } R \\
\text { While } \exists \text { an unmarked state } r \in R \\
\text { Mark } r \\
\text { For each } \sigma \in \Sigma \quad / / 0 \\
\text { Let } E=\text { move }(\delta, r, \sigma) \\
\text { Let } e=\varepsilon \text {-closure }(\delta, E) \\
\text { If } e \notin R \\
\text { Let } R=R \cup\{e\} \\
\longrightarrow \quad \text { Let } \delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\} \\
\text { Let } F_{d}=\left\{r \mid \exists s \in r \text { with } s \in F_{n}\right\}
\end{gathered}
$$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	
$\{C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
$\longrightarrow \quad$ For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $e=\varepsilon$-closure (δ, E)
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$?$
$\{C\}$		

Detailed NFA \rightarrow DFA Example

$$
\begin{aligned}
& \text { Let } r_{0}=\varepsilon \text {-closure }\left(\delta, q_{0}\right) \text {, add it to } R \\
& \text { While } \exists \text { an unmarked state } r \in R \\
& \text { Mark } r \\
& \text { For each } \sigma \in \Sigma \quad / / 1 \\
& \text { Let } E=\operatorname{move}(\delta, r, \sigma) \\
& \longrightarrow \quad \text { Let } e=\varepsilon \text {-closure }(\delta, E) \\
& \text { If } e \notin R \\
& \text { Let } R=R \cup\{e\} \\
& \text { Let } \delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\} \\
& \text { Let } F_{d}=\left\{r \mid \exists s \in r \text { with } s \in F_{n}\right\}
\end{aligned}
$$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $e \notin R$
Let $R=R \cup\{e\}$
\longrightarrow Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, \mathrm{e}\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R \longrightarrow While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure($\overline{\mathrm{C}}, \mathrm{E}$)
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$		

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
\longrightarrow For each $\sigma \in \Sigma$

$$
\begin{aligned}
& \text { Let } E=\operatorname{move}(\delta, r, \sigma) \\
& \text { Let } e=\varepsilon \text {-closure }(\delta, E) \\
& \text { If } e \notin R \\
& \quad \text { Let } R=R \cup\{e\} \\
& \text { Let } \delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}
\end{aligned}
$$

Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$		

Detailed NFA \rightarrow DFA Example

$$
\begin{gathered}
\text { Let } r_{0}=\varepsilon \text {-closure }\left(\delta, q_{0}\right) \text {, add it to } R \\
\text { While } \exists \text { an unmarked state } r \in R \\
\text { Mark } r \\
\text { For each } \sigma \in \Sigma \quad / / 0 \\
\\
\text { Let } E=\text { move }(\delta, r, \sigma) \\
\\
\text { Let } e=\varepsilon \text {-closure }(\delta, E) \\
\\
\text { If } e \notin R \\
\text { Let } R=R \cup\{e\} \\
\\
\text { Let } \delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\} \\
\text { Let } F_{d}= \\
\left\{r \mid \exists s \in r \text { with } s \in F_{n}\right\}
\end{gathered}
$$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 0$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $e=\varepsilon$-closure (δ, E)
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
$\longrightarrow \quad$ Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
$\longrightarrow \quad$ For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $e=\varepsilon$-closure (δ, E)
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
$\longrightarrow \quad$ Let $\mathrm{e}=\varepsilon$-closure (δ, E)
If $\mathrm{e} \notin \mathrm{R}$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	$\{C\}$

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $e=\varepsilon$-closure (δ, E)
If $e \notin R$
Let $R=R \cup\{e\}$
$\longrightarrow \quad$ Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, \mathbf{e}\}$
Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	$\{C\}$

Detailed NFA \rightarrow DFA Example

Let $r_{0}=\varepsilon$-closure $\left(\delta, q_{0}\right)$, add it to R

While \exists an unmarked state $r \in R$

Mark r
For each $\sigma \in \Sigma \quad / / 1$
Let $E=\operatorname{move}(\delta, r, \sigma)$
Let $\mathrm{e}=\varepsilon$-closure $(\mathrm{\delta}, \mathrm{E})$
If $e \notin R$
Let $R=R \cup\{e\}$
Let $\delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}$
\longrightarrow Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$

	0	1
$\{A, B, C\}$	$\{B, C\}$	$\{A, B, C\}$
$\{B, C\}$	$\{C\}$	$\{B, C\}$
$\{C\}$	$\{C\}$	$\{C\}$

Detailed NFA \rightarrow DFA Example: Completed

NFA \rightarrow DFA Example

Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
- Each DFA state is a subset of the set of NFA states
- Given NFA with n states, DFA may have 2^{n} states
> Since a set with n items may have 2^{n} subsets
- Corollary
> Reducing a NFA with n states may be $\mathrm{O}\left(2^{\mathrm{n}}\right)$

DFA

Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $\mathrm{O}\left(2^{|R|}\right)$
- But usually not the worst case in practice
- Use DFA to accept/reject string s
- Assume we can compute $\delta(\mathrm{q}, \sigma)$ in constant time
- Then time to process s is $\mathrm{O}(|\mathrm{s}|)$
> Can't get much faster!
- Constructing the DFA is a one-time cost
- But then processing strings is fast

Closing the Loop: Reducing DFA to RE

Reducing DFAs to REs

- General idea
- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

DFA to RE example

Language over $\Sigma=\{0,1\}$ such that every string is a multiple of 3 in binary

$\left(0+1\left(01^{*} 0\right) 1\right)^{*}$

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
- Ignoring the particular names of states
- In other words
- For every DFA, there is a unique DFA with minimum number of states that accepts the same language

Minimizing DFA: Hopcroft Reduction

- Intuition
- Look to distinguish states from each other
> End up in different accept / non-accept state with identical input
- Algorithm
- Construct initial partition
> Accepting \& non-accepting states
- Iteratively split partitions (until partitions remain fixed)
> Split a partition if members in partition have transitions to different partitions for same input
- Two states x , y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions \& remove dead states

Splitting Partitions

- No need to split partition \{S,T,U,V\}
- All transitions on a lead to identical partition P2
- Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$ into $\{\mathrm{S}, \mathrm{T}\},\{\mathrm{U}\}$
- Transitions on a from S,T lead to partition P2
- Transition on a from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
- Initially no need to split partition \{S,T,U\}
- After splitting partition $\{\mathrm{X}, \mathrm{Y}\}$ into $\{\mathrm{X}\},\{\mathrm{Y}\}$ we need to split partition $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$ into $\{\mathrm{S}, \mathrm{T}\},\{\mathrm{U}\}$

Minimizing DFA: Example 1

- DFA

- Initial partitions
- Split partition

Minimizing DFA: Example 1

- DFA

- Initial partitions
- Accept

$$
\{R\}=P 1
$$

- Reject

$$
\{\mathrm{S}, \mathrm{~T}\}=\mathrm{P} 2
$$

- Split partition?
\rightarrow Not required, minimization done
- move(S,a) = T \in P2
- move(S,b) $=R \in P 1$
- move(T,a) = T E P2
- move (T,b) $=R \in P 1$

Minimizing DFA: Example 2

Minimizing DFA: Example 2

- DFA

- Initial partitions
- Accept $\{$ R $\}=$ P1

> DFA already

- Reject

$$
\{\mathrm{S}, \mathrm{~T}\}=\mathrm{P} 2
$$

- Split partition? $\quad \rightarrow$ Yes, different partitions for B
- move(S,a) = T E P2
- move(T,a) = T \in P2
$-\operatorname{move}(S, b) \quad=T \in P 2$
$-\operatorname{move}(T, b) \quad=R \in P 1$

Brzozowski's Algorithm: DFA Minimization

1. Given a DFA, reverse all the edges, make the initial state an accept state, and the accept states initial, to get an NFA
2. NFA-> DFA
3. For the new DFA, reverse the edges (and initial-accept swap) get an NFA
4. NFA -> DFA

Brzozowski's algorithm

Complement of DFA

- Given a DFA accepting language L
- How can we create a DFA accepting its complement?
- Example DFA
$>\Sigma=\{a, b\}$

Complement of DFA

- Algorithm
- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state \& every nonaccepting state to an accepting state
- Note this only works with DFAs
- Why not with NFAs?

Summary of Regular Expression Theory

- Finite automata
- DFA, NFA
- Equivalence of RE, NFA, DFA
- RE \rightarrow NFA
> Concatenation, union, closure
- NFA \rightarrow DFA
$>\varepsilon$-closure \& subset algorithm
- DFA
- Minimization, complementation

