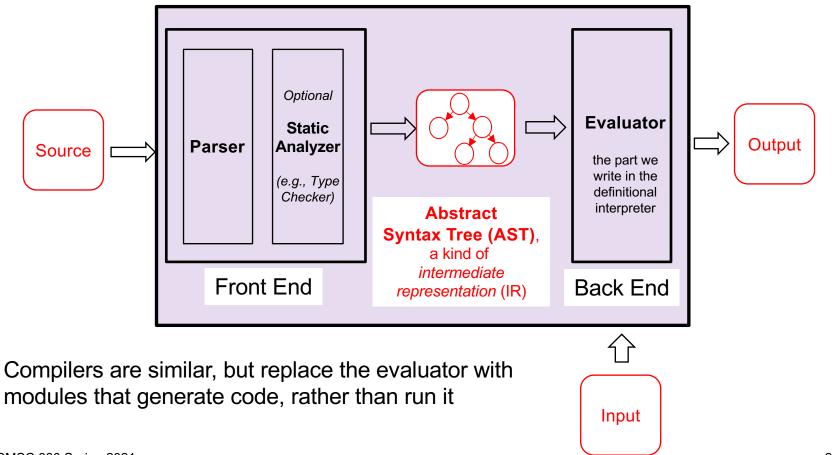
CMSC 330: Organization of Programming Languages

Context Free Grammars

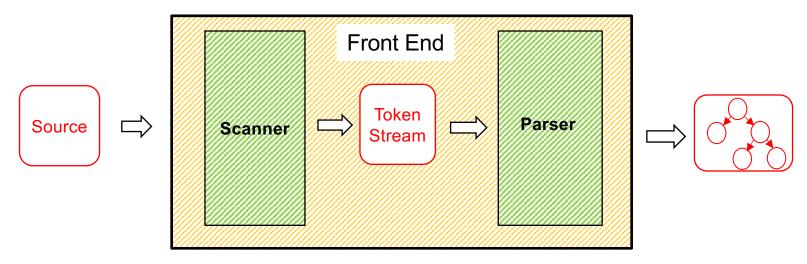
Interpreters



Implementing the Front End

- Goal: Convert program text into an Abstract Syntax Tree
- ASTs are easier to work with
 - Analyze, optimize, execute the program
- Do this using regular expressions?
 - Won't work!
 - Regular expressions cannot reliably parse paired braces {{ ... }},
 parentheses (((...))), etc.
- Instead: Regexps for tokens (scanning), and Context Free Grammars for parsing tokens

Front End – Scanner and Parser



- Scanner / lexer converts program source into tokens (keywords, variable names, operators, numbers, etc.) using regular expressions
- Parser converts tokens into an AST (abstract syntax tree). Parsers recognize strings defined as context free grammars

Context-Free Grammar (CFG)

- A way of describing sets of strings (= languages)
 - Write L(G) the language of strings defined by grammar G
- Example grammar G is

$$S \rightarrow \varepsilon \mid 0S \mid 1S$$

which says that string $s' \in L(G)$ iff

- $s' = \varepsilon$, or
- $\exists s \in L(G)$ such that s' = 0s, or s' = 1s
- Grammar is same as regular expression (0|1)*
 - Generates / accepts the same set of strings

CFGs Are Expressive

- CFGs subsume REs (and DFAs, NFAs)
 - There is a CFG that generates any regular language
 - But: REs are often better notation for those languages
- And CFGs can define languages regexps cannot
 - S \rightarrow (S) | ϵ // represents balanced pairs of ()'s

As a result, CFGs often used as the basis of parsers for programming languages

CMSC 330 Spring 2021

Parsing with CFGs

- CFGs formally define languages, but they do not define an algorithm for accepting strings
- Several styles of algorithm; each works only for less expressive forms of CFG
 - LL(k) parsing
 We will discuss this next lecture
 - LR(k) parsing
 - LALR(k) parsing
 - SLR(k) parsing
- Tools exist for building parsers from grammars
 - JavaCC, Yacc, etc.

Formal Definition: Context-Free Grammar

- A CFG G is a 4-tuple (Σ, N, P, S)
 - Σ alphabet (finite set of symbols, or terminals)
 - > Often written in lowercase
 - N a finite, nonempty set of nonterminal symbols
 - > Often written in UPPERCASE
 - > It must be that $N \cap \Sigma = \emptyset$
 - P a set of productions of the form $N \to (\Sigma | N)^*$
 - Informally: the nonterminal can be replaced by the string of zero or more terminals / nonterminals to the right of the →
 - > Can think of productions as rewriting rules (more later)
 - S ϵ N the start symbol

Notational Shortcuts

```
S \rightarrow aBc S \rightarrow aBc // S is start symbol A \rightarrow aA | b // A \rightarrow b | A \rightarrow b | A \rightarrow c
```

- A production is of the form
 - left-hand side (LHS) → right hand side (RHS)
- If not specified
 - Assume LHS of first production is the start symbol
- Productions with the same LHS
 - Are usually combined with |
- If a production has an empty RHS
 - It means the RHS is ε

Aside: Backus-Naur Form

- Context-free grammar production rules are also called Backus-Naur Form or BNF
 - Designed by John Backus and Peter Naur
 - Chair and Secretary of the Algol committee in the early 1960s. Used this notation to describe Algol in 1962
- ► A production $A \rightarrow B c D$ is written in BNF as $\langle A \rangle ::= \langle B \rangle c \langle D \rangle$
 - Non-terminals written with angle brackets; uses ::= instead of →
 - Often see hybrids that use ::= instead of → but drop the angle brackets on non-terminals, favoring italics

Generating Strings

- Think of a grammar as generating strings by rewriting
 - Beginning with the start symbol, repeatedly rewrite a nonterminal per a production in the grammar (replace LHS with RHS)
- Example grammar G

```
S \rightarrow 0S \mid 1S \mid \epsilon
```

Generate string 011 from G as follows:

```
S \Rightarrow 0S // using S \rightarrow 0S

\Rightarrow 01S // using S \rightarrow 1S

\Rightarrow 011S // using S \rightarrow 1S

\Rightarrow 011 // using S \rightarrow \epsilon
```

Accepting Strings (Informally)

- Checking if s ∈ L(G) is called acceptance
 - Algorithm: Find a rewriting from G's start symbol that yields s
 > 011 ∈ L(G) according to the previous rewriting
- Terminology
 - Such a sequence of rewrites is a derivation or parse
 - Discovering the derivation is called parsing

Derivations

- Notation
 - ⇒ indicates a derivation of one step
 - ⇒ indicates a derivation of one or more steps
 - ⇒* indicates a derivation of zero or more steps
- Example
 - $S \rightarrow 0S \mid 1S \mid \epsilon$
- For the string 010
 - $S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 010$
 - S ⇒ + 010
 - 010 ⇒* 010

CMSC 330 Spring 2021

Language Generated by Grammar

▶ L(G) the language defined by G is

$$L(G) = \{ s \in \Sigma^* \mid S \Rightarrow^+ s \}$$

- S is the start symbol of the grammar
- Σ is the alphabet for that grammar
- In other words

 All strings over Σ that can be derived from the start symbol via one or more productions

Consider the grammar

$$S \rightarrow bS \mid T$$

 $T \rightarrow aT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string aac?

A. $S \Rightarrow T \Rightarrow aT \Rightarrow aTaT \Rightarrow aaT \Rightarrow aacU \Rightarrow aacU$

B. $S \Rightarrow T \Rightarrow U \Rightarrow aU \Rightarrow aaU \Rightarrow aacU \Rightarrow aa$

 $C. S \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aacU$

D. S \Rightarrow T \Rightarrow aT \Rightarrow aaU \Rightarrow aacU \Rightarrow aac

Consider the grammar

$$S \rightarrow bS \mid T$$

 $T \rightarrow aT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string aac?

A. $S \Rightarrow T \Rightarrow aT \Rightarrow aTaT \Rightarrow aaT \Rightarrow aacU \Rightarrow aacU$

B. $S \Rightarrow T \Rightarrow U \Rightarrow aU \Rightarrow aaU \Rightarrow aacU \Rightarrow aa$

 $C. S \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aacU$

 $D.S \Rightarrow T \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aac$

Consider the grammar

```
S \rightarrow bS \mid T

T \rightarrow aT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following strings is generated by this grammar?

A. aba

B. ccc

C. bab

D. ca

Consider the grammar

```
\begin{array}{c} S \rightarrow bS \mid T \\ T \rightarrow aT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}
```

Which of the following strings is generated by this grammar?

A. aba

B. ccc

C. bab

D. ca

Consider the grammar

```
S \rightarrow bS \mid T

T \rightarrow aT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following regular expressions accepts the same language as this grammar?

- A. (a|b|c)*
- B. b*a*c*
- C. (b|ba|bac)*
- D. bac*

Consider the grammar

$$\begin{array}{c} S \rightarrow bS \mid T \\ T \rightarrow aT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$

Which of the following regular expressions accepts the same language as this grammar?

- A. (a|b|c)*
- B. b*a*c*
- C. (b|ba|bac)*
- D. bac*

Designing Grammars

 Use recursive productions to generate an arbitrary number of symbols

```
A \rightarrow xA \mid \epsilon // Zero or more x's 
 A \rightarrow yA \mid y // One or more y's
```

2. Use separate non-terminals to generate disjoint parts of a language, and then combine in a production

```
a*b*// a's followed by bsS \rightarrow AB// Zero or more a'sA \rightarrow aA \mid \epsilon// Zero or more b's
```

Designing Grammars

To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle

Designing Grammars

4. For a language that is the union of other languages, use separate nonterminals for each part of the union and then combine

```
\{a^n(b^m|c^m) \mid m > n \ge 0\}

Can be rewritten as

\{a^nb^m \mid m > n \ge 0\} \cup \{a^nc^m \mid m > n \ge 0\}

S \to T \mid V

T \to aTb \mid U

U \to Ub \mid b

V \to aVc \mid W

W \to Wc \mid c
```

Practice

Try to make a grammar which accepts

```
• 0*|1* S \rightarrow A \mid B

A \rightarrow 0A \mid \epsilon

B \rightarrow 1B \mid \epsilon
```

• $0^n 1^n$ where $n \ge 0$

$$S \rightarrow 0S1 \mid \epsilon$$

- Give some example strings from this language
 - S → 0 | 1S > 0, 10, 110, 1110, 11110, ...
 - What language is it, as a regexp?

> 1*0

Which of the following grammars describes the same language as 0^{n1m} where $m \le n$?

- A. $S \rightarrow 0S1 \mid \epsilon$
- B. $S \rightarrow 0S1 \mid S1 \mid \epsilon$
- C. $S \rightarrow 0S1 \mid 0S \mid \epsilon$
- D. $S \rightarrow SS \mid 0 \mid 1 \mid \epsilon$

Which of the following grammars describes the same language as 0^{n1m} where $m \le n$?

- A. $S \rightarrow 0S1 \mid \epsilon$
- B. $S \rightarrow 0S1 \mid S1 \mid \epsilon$
- C. $S \rightarrow 0S1 \mid 0S \mid \epsilon$
- D. $S \rightarrow SS \mid 0 \mid 1 \mid \epsilon$

same number of 0 and 1

more 1's

more 0's

no control of the number

Parse Trees

Parse tree shows how a string is produced by a grammar

Will be useful for spotting ambiguity; discussed later

S

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

Root node of parse tree is the start symbol

CMSC 330 Spring 2021 30

S

$$S \Rightarrow aS$$

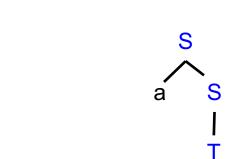
$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

Children of a node are symbols on RHS of production applied to the node's nonterminal

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$



 $S \Rightarrow aS \Rightarrow aT$

Internal nodes are always nonterminals. Leafs are terminals

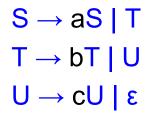
$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU$$

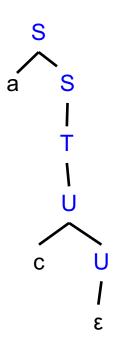
$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$

$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$

$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow acU$$





Reading the leaves
left to right shows the
string corresponding
to the tree

CFGs and ASTs

- An abstract syntax tree (AST) is a data structure that represents a parsed input, e.g., a program expression
 - An AST can be expressed with an OCaml datatype that is very close to the CFG that describes the language syntax

CFG for arithmetic expressions:

AST (in OCaml):

Eventual Goal: Parse a CFG to get an AST

AST definition (OCaml):

```
type expr = A | B | C | D
    | Plus of expr * expr
    | Minus of expr * expr
    | Mult of expr * expr
```

```
a-c parses to
a-(b*a) parses to
c*(b+d) parses to
```

```
Minus (A, C)
Minus (A, Mult (B,A))
Mult (C, Plus (B,D))
```

Parse Trees not the same as ASTs

- A parse tree shows the structure of the parse of an expression according to productions in the grammar
- An abstract syntax tree is a data structure that is used by the compiler or interpreter
 - To type check it, compile it, optimize it, run it, etc.

Parse Trees for Expressions

▶ A parse tree shows the structure of the parse of an expression according to productions in the grammar

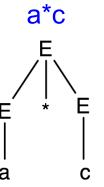
$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

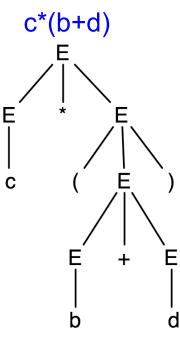
$$a \qquad a*c \qquad c*(b+d)$$

Parse Trees for Expressions

▶ A parse tree shows the structure of the parse of an expression according to productions in the grammar

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

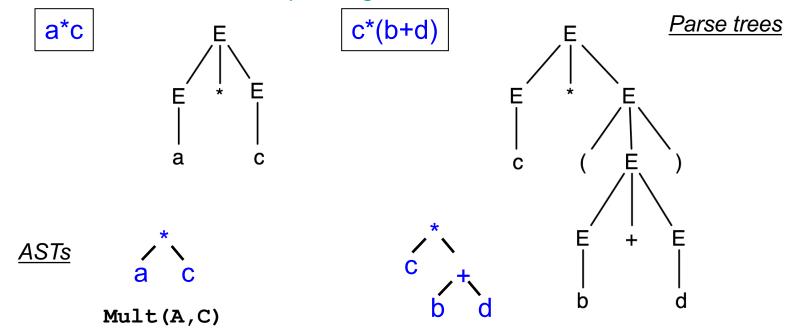




CMSC 330 Spring 2021

Abstract Syntax Trees

- A parse tree and an AST are similar, but not the same
 - The former describes parsing, the latter is a result of it



Mult(C,Plus(B,D))

Practice

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

Make a parse tree for...

- a*b
- a+(b-c)
- d*(d+b)-a
- (a+b)*(c-d)
- a+(b-c)*d

Leftmost and Rightmost Derivation

- Leftmost derivation
 - Leftmost nonterminal is replaced in each step
- Rightmost derivation
 - Rightmost nonterminal is replaced in each step
- Example
 - Grammar
 - > S \rightarrow AB, A \rightarrow a, B \rightarrow b
 - Leftmost derivation for "ab"
 - \gt S \Rightarrow AB \Rightarrow aB \Rightarrow ab
 - Rightmost derivation for "ab"
 - $\gt S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$

CMSC 330 Spring 2021

Parse Tree For Derivations

 $S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba$

Parse tree may be same for both leftmost & rightmost derivations

Example Grammar: S → a | SbS | String: aba
 Leftmost Derivation
 S ⇒ SbS ⇒ abS ⇒ aba
 Rightmost Derivation

- Parse trees don't show order productions are applied
- Every parse tree has a unique leftmost and a unique rightmost derivation

Parse Tree For Derivations (cont.)

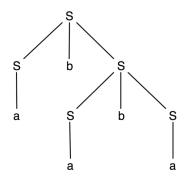
- Not every string has a unique parse tree
 - Example Grammar: S → a | SbS String: ababa

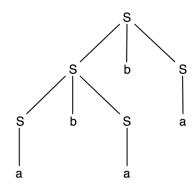
Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow abS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$

Another Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$





Ambiguity

 A grammar is ambiguous if it accepts a string via multiple leftmost derivations

I saw a girl with a telescope.

Ambiguity

- A grammar is ambiguous if it accepts a string via multiple leftmost derivations
 - Equivalent to multiple parse trees
 - Can be hard to determine

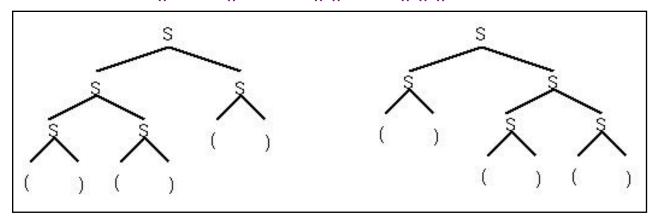
1.
$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$ No
 $U \rightarrow cU \mid \varepsilon$
2. $S \rightarrow T \mid T$
 $T \rightarrow Tx \mid Tx \mid x \mid x$
3. $S \rightarrow SS \mid () \mid (S)$?

Ambiguity (cont.)

Example

- Grammar: $S \rightarrow SS \mid () \mid (S)$ String: ()()()
- 2 distinct (leftmost) derivations (and parse trees)
 - $ightarrow S \Rightarrow \underline{S}S \Rightarrow \underline{S}SS \Rightarrow ()\underline{S}S \Rightarrow ()()\underline{S} \Rightarrow ()()()$
 - $ightharpoonup S \Rightarrow \underline{S}S \Rightarrow ()\underline{S} \Rightarrow ()\underline{S}S \Rightarrow ()()\underline{S} \Rightarrow ()()()$



CFGs for Programming Languages

Recall that our goal is to describe programming languages with CFGs

 We had the following example which describes limited arithmetic expressions

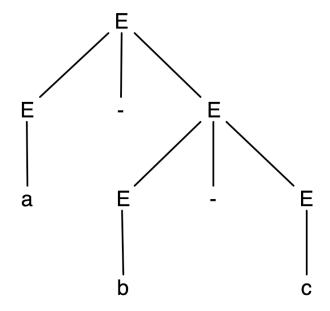
$$E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$$

- What's wrong with using this grammar?
 - It's ambiguous!

Example: a-b-c

$$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E-E \Rightarrow$$

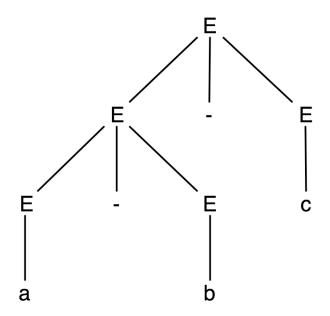
a-b-E \Rightarrow a-b-c



Corresponds to a-(b-c)

$$E \Rightarrow E-E \Rightarrow E-E-E \Rightarrow$$

a-E-E \Rightarrow a-b-c

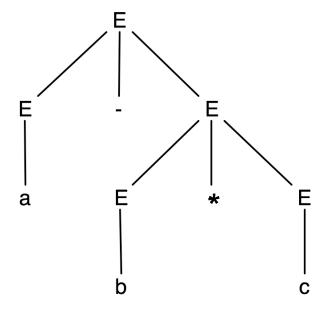


Corresponds to (a-b)-c

Example: a-b*c

$$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E*E \Rightarrow$$

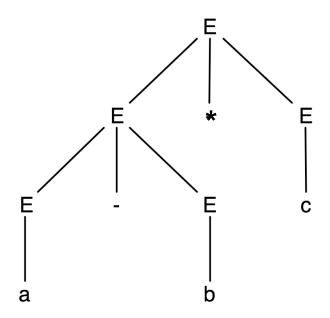
 $a-b*E \Rightarrow a-b*c$



Corresponds to a-(b*c)

$$E \Rightarrow E-E \Rightarrow E-E*E \Rightarrow$$

 $a-E*E \Rightarrow a-b*E \Rightarrow a-b*c$



Corresponds to (a-b)*c

Another Example: If-Then-Else

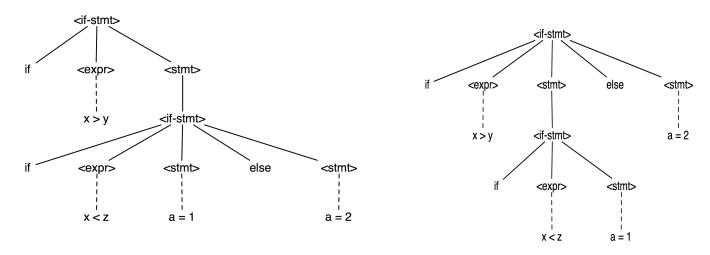
Aka the dangling else problem

Consider the following program fragment

```
if (x > y)
  if (x < z)
    a = 1;
  else a = 2;
(Note: Ignore newlines)</pre>
```

Two Parse Trees

```
if (x > y)
    if (x < z)
        a = 1;
    else a = 2;</pre>
```



Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \to (S, S, S) | 1$
- D. None of the above.

Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \rightarrow (S, S, S) \mid 1$
- D. None of the above.

Dealing With Ambiguous Grammars

- Ambiguity is bad
 - Syntax is correct
 - But semantics differ depending on choice

```
Different associativity (a-b)-c vs. a-(b-c)
```

- Different precedence (a-b)*c vs. a-(b*c)
- Different control flow if (if else) vs. if (if) else

Two approaches

- Rewrite grammar
 - Grammars are not unique can have multiple grammars for the same language. But result in different parses.
- Use special parsing rules
 - > Depending on parsing tool

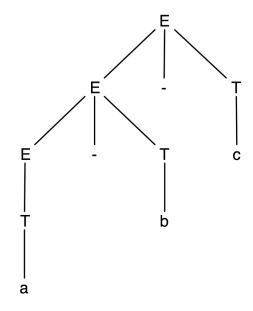
Fixing the Expression Grammar

Require right operand to not be bare expression

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

T \rightarrow a \left| b \left| c \right| (E)

- Corresponds to left associativity
- Now only one parse tree for a-b-c
 - Find derivation



What if we want Right Associativity?

- Left-recursive productions
 - Used for left-associative operators
 - Example

```
E \rightarrow E+T \mid E-T \mid E*T \mid T
T \rightarrow a \left| b \left| c \left| (E)
```

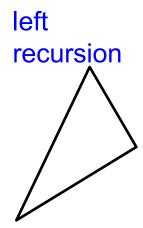
- Right-recursive productions
 - Used for right-associative operators
 - Example

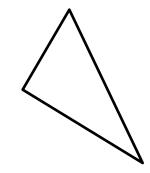
$$E \rightarrow T+E \mid T-E \mid T^*E \mid T$$

T \rightarrow a \left| b \left| c \left| (E)

Parse Tree Shape

The kind of recursion determines the shape of the parse tree





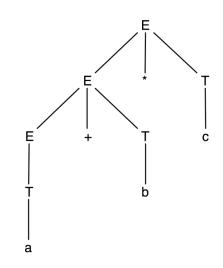
A Different Problem

▶ How about the string a+b*c?

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

T \rightarrow a \left| b \left| c \right| (E)

Doesn't have correct precedence for *



 When a nonterminal has productions for several operators, they effectively have the same precedence

Solution – Introduce new nonterminals

Final Expression Grammar

```
E \rightarrow E+T \mid E-T \mid T lowest precedence operators

T \rightarrow T^*P \mid P higher precedence

P \rightarrow a \mid b \mid c \mid (E) highest precedence (parentheses)
```

- Controlling precedence of operators
 - Introduce new nonterminals
 - Precedence increases closer to operands
- Controlling associativity of operators
 - Introduce new nonterminals
 - Assign associativity based on production form
 - E → E+T (left associative) vs. E → T+E (right associative)

But parsing method might limit form of rules

Conclusion

- Context Free Grammars (CFGs) can describe programming language syntax
 - They are a kind of formal language that is more powerful than regular expressions
- CFGs can also be used as the basis for programming language parsers (details later)
 - But the grammar should not be ambiguous
 - > May need to change more natural grammar to make it so
 - Parsing often aims to produce abstract syntax trees
 - > Data structure that records the key elements of program