
CMSC 330: Organization of
Programming Languages

Lambda Calculus

1CMSC 330 Spring 2021

Turing Machine

7CMSC 330 Spring 2021

8

Turing Completeness

Turing machines are the most powerful
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program

• A program can be written to emulate a Turing machine

• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton

CMSC 330 Spring 2021

9

Programming Language Expressiveness

So what language features are needed to express
all computable functions?
• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience
• Multi-argument functions foo (a, b, c)

Ø Use currying or tuples

• Loops while (a < b) …

Ø Use recursion

• Side effects a := 1

Ø Use functional programming pass “heap” as an argument to

each function, return it when with function’s result:

effectful : ‘a → ‘s → (‘s * ‘a)
CMSC 330 Spring 2021

10

Programming Language Expressiveness

It is not difficult to achieve Turing Completeness
• Lots of things are ‘accidentally’ TC

Some fun examples:
• x86_64 `mov` instruction

• Minecraft

• Magic: The Gathering

• Java Generics

There’s a whole cottage industry of proving things
to be TC
But: What is a “core” language that is TC?

CMSC 330 Spring 2021

11

Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church

(born in Washingon DC!)

Formal system
• Designed to investigate functions & recursion

• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability

• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…

CMSC 330 Spring 2021

12

Why Study Lambda Calculus?
It is a “core” language
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems,

algorithms, …

Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), … (and functional languages like

OCaml, Haskell, F#, …)

• Excel, as of 2021!

CMSC 330 Spring 2021

13

Lambda Calculus Syntax

A lambda calculus expression is defined as
e ::= x variable

| λx.e abstraction (fun def)
| e e application (fun call)

Ø This grammar describes ASTs; not for parsing - ambiguous!

Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it! Nothing but higher-order functions

CMSC 330 Spring 2021

14

Lambda Calculus Syntax Ambiguity

How is parsing ambiguous?
Let’s try: λx.x x

CMSC 330 Spring 2021

E → V | L | A

L → λV.E

A → E E

V → v | ε

L

λ A.

V

V

V V

x x x

15

Lambda Calculus Syntax Ambiguity

CMSC 330 Spring 2021

E → V | L | A

L → λV.E

A → E E

V → v | ε

A

V

x

L

λ V.V

x x

How is parsing ambiguous?
Let’s try: λx.x x

16

Lambda Calculus Syntax

While this means that our grammar is not so
useful for parsing, it is still useful for write LC
terms if we follow some conventions
Almost all literature you will find uses two
syntactic conventions
We add a third convention that is very common
‘syntactic sugar’ for ease of reading larger LC
terms

CMSC 330 Spring 2021

17

Disambiguating: Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses

• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z

• Same rule as OCaml

As a convenience, we use the following “syntactic
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1

CMSC 330 Spring 2021

18

Warmup Quiz

Revisiting λx.x x considering our conventions
Which parse tree is it?

CMSC 330 Spring 2021

E → V | L | A

L → λV.E

A → E E

V → v | ε

L

λ A.

V

V

V V

x x x

A

V

x

L

λ V.V

x x

19

Warmup Quiz

Revisiting λx.x x considering our conventions
Which parse tree is it?

CMSC 330 Spring 2021

E → V | L | A

L → λV.E

A → E E

V → v | ε

L

λ A.

V

V

V V

x x x

A

V

x

L

λ V.V

x x

Quiz #1

20

A. True
B. False

CMSC 330 Spring 2021

λx.(y z) and λx.y z are equivalent

Quiz #1

λx.(y z) and λx.y z are equivalent

21

A.True
B. False

CMSC 330 Spring 2021

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

22

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Spring 2021

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

23

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Spring 2021

24

But what does it mean?

Many ways to define the semantics of LC
We will look at two
- Operational Semantics
- Definitional Interpreter

CMSC 330 Spring 2021

25

Lambda Calculus Semantics
Evaluation: All that’s involved are function calls
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2

Ø This operation is called substitution
• Replace formals with actuals

• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term

Ø Order reductions are applied does not affect final value!

When a term cannot be reduced further it is in
beta normal form

CMSC 330 Spring 2021

26

Beta Reduction Example

(λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]

// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters

• Formal

• Actual

CMSC 330 Spring 2021

27

Big-Step Operational Semantics
Beta reduction says how to evaluate a single call

It doesn’t say how to evaluate a term with many

function calls in it

We can use operational semantics to “fully
evaluate” a term in one “big step”

CMSC 330 Spring 2021

(λx.e1) ! (λx.e1)

e1 ⇓ (λx.e3) e2 ⇓ e4 e3[x:=e4] ⇓ e5

e1 e2 ⇓ e5

Beta reduction, here

28

Two Varieties

There are two common variants of big-step
semantics

l Eager evaluation (aka strict, or call by value)
l Lazy evaluation (aka call by name)

CMSC 330 Spring 2021

29

Eager

Notice that we evaluated the argument e2 before
performing the beta-reduction

This is the first version we saw

Hence, eager

CMSC 330 Spring 2021

(λx.e1) ! (λx.e1)

e1 ⇓ (λx.e3) e2 ⇓ e4 e3[x:=e4] ⇓ e5

e1 e2 ⇓ e5

30

Lazy

Alternatively, we could have performed beta
reduction without evaluating e2; use it as is

l Hence, lazy

CMSC 330 Spring 2021

(λx.e1) ! (λx.e1)

e1 ⇓ (λx.e3) e3[x:=e2] ⇓ e4

e1 e2 ⇓ e4

31

Small Step Semantics

Operational semantics rules we have seen have
always been ”big step”, i.e., complete evaluation

e ! e’ says that e will terminate as e’

This is a little unsatisfying
It doesn’t account for nontermination
It doesn’t identify where a program fails to progress

Small-step semantics addresses these problems
e → e’ in small-step says e takes one step to e’
We say a term e1 can be beta-reduced to term e2 if e1
steps to e2 after one or more steps

CMSC 330 Spring 2021

32

Small-Step Rules of LC

Here are the “small-step” (→) rules:

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)

33

Evaluation Strategies

These rules are highly flexible
It might be that for a given program, there are several
possible rules that could apply

Typically, a programming language will choose an
evaluation strategy which is described by using
only a subset of these rules. Examples:

Call by Value
Call by Need
Partial Evaluation

CMSC 330 Spring 2021

34

Call by Value

Before doing a beta reduction, we make sure the
argument cannot, itself, be further evaluated
This is known as call-by-value (CBV)

This is the Eager big step approach

CMSC 330 Spring 2021

e2 → e3

e1 e2 → e1 e3

e = (λx.e2) or e = y

(λx.e1) e → e1[x:=e]

e1 → e3

e1 e2 → e3 e2

35

Beta Reductions (CBV)

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y

CMSC 330 Spring 2021

36

Beta Reductions (CBV)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x →x x

CMSC 330 Spring 2021

Quiz #3

(λx.y) z can be beta-reduced to

37

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Spring 2021

Quiz #3

(λx.y) z can be beta-reduced to

38

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Spring 2021

Quiz #4

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

39CMSC 330 Spring 2021

Quiz #4

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

40CMSC 330 Spring 2021

41

Evaluation Order

The CBV rules we saw permit small-stepping
either the function part or the argument part

If both are possible, the rules allow either one

Here’s how we would require left-to-right order

The second rule prohibits evaluating e2 except when
e1 cannot be evaluated further

CMSC 330 Spring 2021

e2 → e3

e1 e2 → e1 e3

e1 → e3

e1 e2 → e3 e2

e1 = y or e1 = λx.e

e2 → e3

e1 e2 → e1 e3

e1 → e3

e1 e2 → e3 e2

42

Call by Name

Instead of the CBV strategy, we can specifically
choose to perform beta-reduction before we
evaluate the argument
This is known as call-by-name (CBN)

This is the Lazy small-step approach

CMSC 330 Spring 2021

e1 → e3

e1 e2 → e3 e2

(λx.e1) e2 → e1[x:=e2]

CBN Reduction

CBV
• (λz.z) ((λy.y) x) → (λz.z) x → x

CBN
• (λz.z) ((λy.y) x) → (λy.y) x → x

43CMSC 330 Spring 2021

Beta Reductions (CBN)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) →

44CMSC 330 Spring 2021

Beta Reductions (CBN)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

45CMSC 330 Spring 2021

46

Why Does This Matter?

The rules we just showed are very common for
programming languages based on LC

CBV is the most common (e.g. OCaml, Java)
CBN does come up (Haskell uses a variant known as
“call-by-need”) but is much less common

Interestingly: more programs terminated under
call-by-name. Can you think of why?

l Consider: (λx.e2) e1,
l What if e1 would never terminate, but e2 would?

CMSC 330 Spring 2021

47

Evaluating Within a Function

Our original rules had evaluation under the lambda
Where does this help us?

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)

Partial Evaluation

That rule is useful when you have a beta-
reduction under a lambda:
• (λy.(λz.z) y x)

Called partial evaluation
• Can combine with CBN or CBV (just add in the rule)
• In practical languages, this evaluation strategy is

employed in a limited way, as compiler optimization

48

→ (λy.y x)

int foo(int x) {
return 0+x;

}

int foo(int x) {
return x;

}
→

CMSC 330 Spring 2021

49

Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following
• (λx.x (λx.x)) z → ?

Ø The rightmost “x” refers to the second binding

• This is a function that
Ø Takes its argument and applies it to the identity function

This function is “the same” as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

Ø This is called alpha-renaming or alpha conversion

• Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z
CMSC 330 Spring 2021

Quiz #5
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

50CMSC 330 Spring 2021

Quiz #5
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

51CMSC 330 Spring 2021

52

Getting Serious about Substitution

We have been thinking informally about
substitution, but the details matter
So, let’s carefully formalize it, to help us see
where it can get tricky!

CMSC 330 Spring 2021

Defining Substitution
Use recursion on structure of terms
• x!"#$%&'= e // Replace x by e
• y!"#$%&'= y // y is different than x, so no effect
• (e1 e2)!"#$%&'= (e1!"#$%&) (e2!"#$%&)

// Substitute both parts of application
• ()"*%+,!"#$%&'$)"*%+

Ø !"#$%&'()#*+'#% ,-#.#/.0.1'*'0)#."2#*+3-#.#456.4#7.0,.84'#*+.*#,-#
2,99'0'"*#9051#5*+'0#%(-&#!1/4'1'"*-#-*.*,6#-65/,":&

Ø ;5 *+'#-38-*,*3*,5"#+.-#"5#'99'6*#,"#*+,-#6.-')#-,"6'#*+'#% 8',":#
-38-*,*3*'2#950#,-#2,99'0'"*#9051#*+'#/.0.1'*'0#% *+.*#,-#,"#'(

• ()-*%+,!"#$%&'$.
Ø <+'#/.0.1'*'0#=#25'-#"5*#-+.0'#*+'#-.1'#".1'#.-#%)#*+'#
7.0,.84'#8',":#-38-*,*3*'2#950

Ø !-#$=&>'(?%@A'BC#6500'6*D E5F

53CMSC 330 Spring 2021

54

Variable Capture
How about the following?
• (λx.λy.x y) y → ?
• When we replace y inside, we don’t want it to be

captured by the inner binding of y, as this violates
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is “the same” as (λx.λz.x z)

Ø Due to alpha conversion

• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first
Ø Now (λx.λz.x z) y → λz.y z

CMSC 330 Spring 2021

Completing the Definition of Substitution

Recall: we need to define (!"#$%)[x:=e]
• We want to avoid capturing (free) occurrences of y in e
• Solution: alpha-conversion!

Ø Change y to a variable w that does not appear in e’ or e

(Such a w is called fresh)

Ø Replace all occurrences of y in e’ by w.

Ø Then replace all occurrences of x in e’ by e!

Formally:
(!"#$%)[x:=e] = !&#''$% (")*&+, (-)*$+,.'& /0.12$03,

55CMSC 330 Spring 2021

56

Beta-Reduction, Again

Whenever we do a step of beta reduction
• (λx.e1) e2 → e1[x:=e2]
• We must alpha-convert variables as necessary
• Sometimes performed implicitly (w/o showing

conversion)

Examples
• (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
• (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y

CMSC 330 Spring 2021

Quiz #6

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

57

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Spring 2021

Quiz #6

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

58

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Spring 2021

