CMSC 330: Organization of Programming Languages

Lambda Calculus

CMSC 330 Spring 2021

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
 - What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
 - Multi-argument functions foo (a, b, c)
 - > Use currying or tuples
 - Loops

while $(a < b) \dots$

- > Use recursion
- Side effects

a := 1

> Use functional programming pass "heap" as an argument to each function, return it when with function's result: effectful : `a → `s → (`s * `a)

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
 - Lots of things are 'accidentally' TC
- Some fun examples:
 - x86_64 `mov` instruction
 - Minecraft
 - Magic: The Gathering
 - Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church (born in Washingon DC!)
- Formal system

- Designed to investigate functions & recursion
- For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
 - Very small but still Turing complete
- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F#, ...)

• Excel, as of 2021! CMSC 330 Spring 2021

Lambda Calculus Syntax

A lambda calculus expression is defined as
 e ::= x variable
 | λx.e abstraction (fun def)
 | e e application (fun call)

> This grammar describes ASTs; not for parsing - ambiguous!
 > Lambda expressions also known as lambda terms

λx.e is like (fun x -> e) in OCaml
 That's it! Nothing but higher-order functions

Lambda Calculus Syntax Ambiguity

- How is parsing ambiguous?
- Let's try: λx.x x

$$\begin{split} & E \rightarrow V \mid L \mid A \\ & L \rightarrow \lambda V.E \\ & A \rightarrow E E \\ & V \rightarrow v \mid \epsilon \end{split}$$

λ V . Α V V V x x x

Lambda Calculus Syntax Ambiguity

- How is parsing ambiguous?
- Let's try: λx.x x

 $E \rightarrow V \mid L \mid A$ $L \rightarrow \lambda V.E$ $A \rightarrow E E$ $V \rightarrow v \mid \epsilon$

 $\begin{array}{ccc} L & V \\ \lambda & V & V & X \\ x & x & X \end{array}$

Α

Lambda Calculus Syntax

- While this means that our grammar is not so useful for *parsing*, it is still useful for write LC terms if we follow some conventions
- Almost all literature you will find uses two syntactic conventions
- We add a third convention that is very common 'syntactic sugar' for ease of reading larger LC terms

Disambiguating: Three Conventions

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx . $\lambda y.x y$ is same as $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations

• let x = e1 in e2 is short for ($\lambda x.e2$) e1

Warmup Quiz

- Revisiting λx.x x considering our conventions
- Which parse tree is it?

Warmup Quiz

- Revisiting λx.x x considering our conventions
- Which parse tree is it?

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

CMSC 330 Spring 2021

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

This term is equivalent to which of the following?

$\lambda x.x a b$

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

This term is equivalent to which of the following?

$\lambda x.x a b$

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

But what does it mean?

- Many ways to define the semantics of LC
- We will look at two
 - Operational Semantics
 - Definitional Interpreter

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls
 (λx.e1) e2
 - Evaluate e1 with x replaced by e2
- This application is called beta-reduction
 - $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
 - > e1[x:=e2] is e1 with occurrences of x replaced by e2
 - > This operation is called substitution
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
 - > Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

► $(\lambda x.\lambda z.x z) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$

// since λ extends to right

// apply $(\lambda \mathbf{x}.e1) e2 \rightarrow e1[\mathbf{x}:=e2]$ // where $e1 = \lambda z.(\mathbf{x} z), e2 = y$

 $\rightarrow \lambda z.(y z)$

// final result

Equivalent OCaml code

• (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Big-Step Operational Semantics

- Beta reduction says how to evaluate a single call
 - It doesn't say how to evaluate a term with many function calls in it
- We can use operational semantics to "fully evaluate" a term in one "big step"

Two Varieties

- There are two common variants of big-step semantics
 - Eager evaluation (aka strict, or call by value)
 - Lazy evaluation (aka call by name)

Eager

- Notice that we evaluated the argument e2 before performing the beta-reduction
 - This is the first version we saw
- ► Hence, eager

(λx.e1) ↓ (λx.e1)

Lazy

- Alternatively, we could have performed beta reduction *without* evaluating e2; use it as is
 - Hence, *lazy*

(λx.e1) ↓ (λx.e1)

Small Step Semantics

- Operational semantics rules we have seen have always been "big step", i.e., complete evaluation
 - e U e' says that e will terminate as e'
- This is a little unsatisfying
 - It doesn't account for nontermination
 - It doesn't identify where a program fails to progress
- Small-step semantics addresses these problems
 - $e \rightarrow e'$ in small-step says e takes one step to e'
 - We say a term e1 can be beta-reduced to term e2 if e1 steps to e2 after one or more steps

Small-Step Rules of LC

• Here are the "small-step" (\rightarrow) rules:

 $e1 \rightarrow e2$ $(\lambda x.e1) \rightarrow (\lambda x.e2)$

$$\begin{array}{c} e2 \rightarrow \textbf{e3} & e1 \rightarrow \textbf{e3} \\ e1 \ e2 \rightarrow e1 \ \textbf{e3} & e1 \ e2 \rightarrow \textbf{e3} \ e2 \end{array}$$

$$(\lambda x.e1) e2 \rightarrow e1[x:=e2]$$

Evaluation Strategies

- These rules are highly flexible
 - It might be that for a given program, there are several possible rules that could apply
- Typically, a programming language will choose an evaluation strategy which is described by using only a subset of these rules. Examples:
 - Call by Value
 - Call by Need
 - Partial Evaluation

Call by Value

- Before doing a beta reduction, we make sure the argument cannot, itself, be further evaluated
- This is known as call-by-value (CBV)
 - This is the Eager big step approach

$$e1 \rightarrow e3$$
 $e2 \rightarrow e3$ $e1 e2 \rightarrow e3 e2$ $e1 e2 \rightarrow e1 e3$

e =
$$(\lambda x.e2)$$
 or e = y
 $(\lambda x.e1) e \rightarrow e1[x:=e]$

Beta Reductions (CBV)

- ► $(\lambda x.x) z \rightarrow z$
- $(\lambda x.y) z \rightarrow y$
- $(\lambda x.x y) z \rightarrow z y$
 - A function that applies its argument to y

Beta Reductions (CBV)

- $(\lambda x.x y) (\lambda z.z) \rightarrow (\lambda z.z) y \rightarrow y$
- $(\lambda x.\lambda y.x y) z \rightarrow \lambda y.z y$
 - A curried function of two arguments
 - Applies its first argument to its second
- (λx.λy.x y) (λz.zz) x → (λy.(λz.zz)y)x → (λz.zz)x → x x

Quiz #3

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

Quiz #4

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) $(\lambda y. y) (\lambda x. \lambda z. z) w$
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Quiz #4

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Evaluation Order

- The CBV rules we saw permit small-stepping either the function part or the argument part
 - If both are possible, the rules allow either one

e1 → e3	e2 → <i>e3</i>
e1 e2 → <i>e3</i> e2	e1 e2 → e1 <i>e3</i>

Here's how we would require left-to-right order

e1 → <i>e3</i>	$e1 = y$ or $e1 = \lambda x.e$
e1 e2 → <i>e3</i> e2	e2 → <i>e3</i>
	e1 e2 → e1 e3

 The second rule prohibits evaluating e2 except when e1 cannot be evaluated further

Call by Name

- Instead of the CBV strategy, we can specifically choose to perform beta-reduction *before* we evaluate the argument
- This is known as call-by-name (CBN)
 - This is the Lazy small-step approach

$$e1 \rightarrow e3$$

 $e1 \ e2 \rightarrow e3 \ e2$
 $(\lambda x.e1) \ e2 \rightarrow e1[x:=e2]$

CBN Reduction

- CBV
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda z.z) x \rightarrow x$
- CBN
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda y.y) x \rightarrow x$

Beta Reductions (CBN)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow$

 $(\lambda x.(\lambda w. x w)) (y z) \rightarrow$

Beta Reductions (CBN)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow (u r) (\lambda y.y)$

$(\lambda \mathbf{x}.(\lambda \mathbf{w}. \mathbf{x} \mathbf{w})) (\mathbf{y} \mathbf{z}) \rightarrow (\lambda \mathbf{w}. (\mathbf{y} \mathbf{z}) \mathbf{w})$

Why Does This Matter?

- The rules we just showed are very common for programming languages based on LC
 - CBV is the most common (e.g. OCaml, Java)
 - CBN does come up (Haskell uses a variant known as "call-by-need") but is much less common
- Interestingly: more programs terminated under call-by-name. Can you think of why?
 - Consider: (λx.e2) e1,
 - What if e1 would never terminate, but e2 would?

Evaluating Within a Function

- Our original rules had evaluation under the lambda
- Where does this help us?

$$(\lambda x.e1) e2 \rightarrow e1[x:=e2]$$

Partial Evaluation

- That rule is useful when you have a betareduction under a lambda:
 - $(\lambda y.(\lambda z.z) y x) \rightarrow (\lambda y.y x)$
- Called partial evaluation
 - Can combine with CBN or CBV (just add in the rule)
 - In practical languages, this evaluation strategy is employed in a limited way, as compiler optimization

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x.x (\lambda x.x)) z \rightarrow ?$
 - > The rightmost "x" refers to the second binding
 - This is a function that
 - > Takes its argument and applies it to the identity function
- This function is "the same" as (λx.x (λy.y))
 - Renaming bound variables consistently preserves meaning
 This is called alpha-renaming or alpha conversion
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

Quiz #5

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

Quiz #5

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

Getting Serious about Substitution

- We have been thinking informally about substitution, but the details matter
- So, let's carefully formalize it, to help us see where it can get tricky!

Defining Substitution

- Use recursion on structure of terms
 - x[x:=e] = e // Replace x by e
 - y[x:=e] = y // y is different than x, so no effect
 - (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application

- $(\lambda x.e')[x:=e] = \lambda x.e'$
 - In λx.e', the x is a parameter, and thus a local variable that is different from other x's. Implements static scoping.
 - So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e'
- (λy.e')[x:=e] = ?
 - The parameter y does not share the same name as x, the variable being substituted for
 - > Is λy.(e'[x:=e]) correct? No...

Variable Capture

- How about the following?
 - $(\lambda x.\lambda y.x y) y \rightarrow ?$
 - When we replace y inside, we don't want it to be captured by the inner binding of y, as this violates static scoping
 - I.e., $(\lambda x.\lambda y.x y) y \neq \lambda y.y y$
- Solution
 - (λx.λy.x y) is "the same" as (λx.λz.x z)
 - > Due to alpha conversion
 - So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first
 Now (λx.λz.x z) y → λz.y z

Completing the Definition of Substitution

- Recall: we need to define (λy.e')[x:=e]
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
 - Replace all occurrences of y in e' by w.
 - > Then replace all occurrences of x in e' by e!

Formally:

 $(\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e])$ (w is fresh)

Beta-Reduction, Again

Whenever we do a step of beta reduction

- $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)

Examples

- $(\lambda x.\lambda y.x y) y = (\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$ // $y \rightarrow z$
- $(\lambda x.x (\lambda x.x)) z = (\lambda y.y (\lambda x.x)) z \rightarrow z (\lambda x.x) // x \rightarrow y$

Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y