CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Infinite Tape

Turing Completeness

- Turing machines are the most powerful description of computation possible
- They define the Turing-computable functions
- A programming language is Turing complete if
- It can map every Turing machine to a program
- A program can be written to emulate a Turing machine
- It is a superset of a known Turing-complete language
- Most powerful programming language possible
- Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
- What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
- Multi-argument functions foo (a, b, c)
> Use currying or tuples
- Loops
> Use recursion
- Side effects while $(a<b) \ldots$
> Use functional programming pass "heap" as an argument to each function, return it when with function's result:

$$
\text { effectful : ‘a } \rightarrow \text { `s } \rightarrow \text { (’s * 'a) }
$$

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
- Lots of things are 'accidentally' TC
- Some fun examples:
- x86_64 `mov` instruction
- Minecraft
- Magic: The Gathering
- Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
- Alonzo Church (born in Washingon DC!)
- Formal system

- Designed to investigate functions \& recursion
- For exploration of foundations of mathematics
- Now used as
- Tool for investigating computability
- Basis of functional programming languages
> Lisp, Scheme, ML, OCamI, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
- Very small but still Turing complete
- But with it can explore general ideas
- Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
- C++ (C++11), PHP (PHP 5.3.0), C\# (C\# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F\#, ...)
- Excel, as of 2021!

Lambda Calculus Syntax

- A lambda calculus expression is defined as
e ::= x
| 入x.e
| e e
variable abstraction (fun def) application (fun call)
> This grammar describes ASTs; not for parsing - ambiguous!
> Lambda expressions also known as lambda terms
- λx.e is like (fun x -> e) in OCaml

That's it! Nothing but higher-order functions

Lambda Calculus Syntax Ambiguity

- How is parsing ambiguous?
- Let's try: $\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$

$$
\begin{aligned}
& E \rightarrow V|L| A \\
& L \rightarrow \lambda V . E \\
& A \rightarrow E E \\
& V \rightarrow V \mid \varepsilon
\end{aligned}
$$

$$
\begin{array}{cccc}
& L & \\
\lambda & & & \\
& & A & \\
& V & V & V \\
& x & x & x
\end{array}
$$

Lambda Calculus Syntax Ambiguity

- How is parsing ambiguous?
- Let's try: $\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$

$$
\begin{aligned}
& E \rightarrow V|L| A \\
& L \rightarrow \lambda V . E \\
& A \rightarrow E E \\
& V \rightarrow V \mid \varepsilon
\end{aligned}
$$

Lambda Calculus Syntax

- While this means that our grammar is not so useful for parsing, it is still useful for write LC terms if we follow some conventions
- Almost all literature you will find uses two syntactic conventions
- We add a third convention that is very common 'syntactic sugar' for ease of reading larger LC terms

Disambiguating: Three Conventions

- Scope of λ extends as far right as possible
- Subject to scope delimited by parentheses
- $\lambda x . \lambda y . x y$ is same as $\lambda x .(\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ($x y$) z
- Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
- let $x=e 1$ in e2 is short for ($\lambda x . e 2$) e1

Warmup Quiz

- Revisiting $\lambda x . x \times$ considering our conventions
-Which parse tree is it?
$\mathrm{E} \rightarrow \mathrm{V}|\mathrm{L}| \mathrm{A}$
$L \rightarrow \lambda V . E$
$\mathrm{A} \rightarrow \mathrm{E} E$
$\mathrm{V} \rightarrow \mathrm{v} \mid \varepsilon$

L				A
$\lambda \mathrm{V}$	A		L	
V	V	V	$\lambda \mathrm{V}$	V
X	X	X	X	X

Warmup Quiz

- Revisiting $\lambda x . x \times$ considering our conventions
- Which parse tree is it?
$\mathrm{E} \rightarrow \mathrm{V}|\mathrm{L}| \mathrm{A}$
$\mathrm{L} \rightarrow \lambda \mathrm{V} . \mathrm{E}$
$\mathrm{A} \rightarrow \mathrm{E} E$
$\mathrm{V} \rightarrow \mathrm{v} \mid \varepsilon$

Quiz \#1

$\lambda x .(y z)$ and $\lambda x \cdot y z$ are equivalent

A. True
B. False

Quiz \#1

$\lambda x .(y z)$ and $\lambda x \cdot y z$ are equivalent

A. True
B. False

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

$$
\begin{aligned}
& \text { A. (} 1 \mathrm{x} . \mathrm{x} \text {) (a b) } \\
& \text { B. ((} \lambda x . x \text {) a) b) } \\
& \text { C. } \lambda x .(x \quad(a b)) \\
& \text { D. (} \lambda x .((x a) b))
\end{aligned}
$$

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

$$
\begin{aligned}
& \text { A. (Ax.x) (a b) } \\
& \text { B. ((} \lambda x . x \text {) a) b) } \\
& \text { C. } \lambda x \text {. }(x \text { (} a \text { b)) } \\
& \text { D. (} \lambda x .((x a) b))
\end{aligned}
$$

But what does it mean?

- Many ways to define the semantics of LC
- We will look at two
- Operational Semantics
- Definitional Interpreter

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls ($\lambda x . e 1$) e2
- Evaluate e 1 with x replaced by e2
- This application is called beta-reduction
- ($\lambda x . e 1$) e2 \rightarrow e1[x:=e2]
$>e 1[x:=e 2]$ is $e 1$ with occurrences of x replaced by e2
> This operation is called substitution
- Replace formals with actuals
- Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

- ($\lambda x . \lambda z . x z) y$
$\rightarrow(\lambda x .(\lambda z .(x z))) y$

// apply ($\lambda x . e 1$) e2 $\rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
$/ /$ where e1 = $\lambda z .(x z), e 2=y$
// final result
$\rightarrow \lambda z$.(y z)
// since λ extends to right

Parameters

- Equivalent OCaml code
- Formal
- Actual
- (fun x -> (fun z -> (x z))) y \rightarrow fun z-> (y z)

Big-Step Operational Semantics

- Beta reduction says how to evaluate a single call
- It doesn't say how to evaluate a term with many function calls in it
- We can use operational semantics to "fully evaluate" a term in one "big step"

Two Varieties

- There are two common variants of big-step semantics
- Eager evaluation (aka strict, or call by value)
- Lazy evaluation (aka call by name)

Eager

- Notice that we evaluated the argument e2 before performing the beta-reduction
- This is the first version we saw
- Hence, eager

$$
(\lambda x . e 1) \Downarrow(\lambda x . e 1)
$$

$\frac{\mathrm{e} 1 \Downarrow(\lambda x . e 3) \quad \mathrm{e} 2 \Downarrow \mathrm{e} 4 \quad \mathrm{e} 3[\mathrm{x}:=\mathrm{e} 4] \Downarrow \mathrm{e} 5}{\mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{e} 5}$

Lazy

- Alternatively, we could have performed beta reduction without evaluating e2; use it as is
- Hence, lazy

$$
(\lambda x . e 1) \Downarrow(\lambda x . e 1)
$$

$\frac{e 1 \Downarrow(\lambda x . e 3) \quad e 3[x:=\mathrm{e} 2] \Downarrow \mathrm{e} 4}{\mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{e} 4}$

Small Step Semantics

- Operational semantics rules we have seen have always been "big step", i.e., complete evaluation
- e \Downarrow e' says that e will terminate as e'
- This is a little unsatisfying
- It doesn't account for nontermination
- It doesn't identify where a program fails to progress
- Small-step semantics addresses these problems
- e \rightarrow e' in small-step says e takes one step to e'
- We say a term e1 can be beta-reduced to term e2 if e1 steps to e2 after one or more steps

Small-Step Rules of LC

- Here are the "small-step" (\rightarrow) rules:
$\frac{\mathrm{e} 1 \rightarrow \mathrm{e} 2}{(\lambda x . \mathrm{e} 1) \rightarrow(\lambda x . e 2)}$
$\frac{\mathrm{e} 2 \rightarrow \mathrm{e} 3}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \mathrm{e} 1 \mathrm{e} 3}$

$$
\frac{\mathrm{e} 1 \rightarrow \mathrm{e} 3}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \mathrm{e} 3 \mathrm{e} 2}
$$

$$
(\lambda x . e 1) \text { e2 } \rightarrow \text { e1[x:=e2] }
$$

Evaluation Strategies

- These rules are highly flexible
- It might be that for a given program, there are several possible rules that could apply
- Typically, a programming language will choose an evaluation strategy which is described by using only a subset of these rules. Examples:
- Call by Value
- Call by Need
- Partial Evaluation

Call by Value

- Before doing a beta reduction, we make sure the argument cannot, itself, be further evaluated
- This is known as call-by-value (CBV)
- This is the Eager big step approach

Beta Reductions (CBV)

- $(\lambda x . x) z \rightarrow z$
- $(\lambda x . y) z \rightarrow y$
- ($\lambda x . x y) z \rightarrow z y$
- A function that applies its argument to y

Beta Reductions (CBV)

- $(\lambda x . x y)(\lambda z . z) \rightarrow(\lambda z . z) y \rightarrow y$
- ($\lambda x . \lambda y . x y) z \rightarrow \quad \lambda y . z y$
- A curried function of two arguments
- Applies its first argument to its second
- $(\lambda x . \lambda y . x y)(\lambda z . z z) x \rightarrow(\lambda y .(\lambda z . z z) y) x \rightarrow(\lambda z . z z) x \rightarrow x x$

Quiz \#3

($\lambda x . y$) z can be beta-reduced to

A. y
B. $y z$
C. z
D. cannot be reduced

Quiz \#3

($\lambda x . y$) z can be beta-reduced to

A. y
B. $y z$
C. z
D. cannot be reduced

Quiz \#4

Which of the following reduces to $\lambda z . z$?
a) $(\lambda y, \lambda z, x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y . y)(\lambda x . \lambda z . z) w$
d) $(\lambda y . \lambda x . z) z(\lambda z . z)$

Quiz \#4

Which of the following reduces to $\lambda z . z$?

a) $(\lambda y, \lambda z . x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y . y)(\lambda x . \lambda z . z) w$
d) $(\lambda y . \lambda x . z) z(\lambda z . z)$

Evaluation Order

- The CBV rules we saw permit small-stepping either the function part or the argument part
- If both are possible, the rules allow either one
$\frac{\mathrm{e} 1 \rightarrow \text { e3 }}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \text { e3 e2 }}$
$\mathrm{e} 2 \rightarrow$ e3
$\mathrm{e} 1 \mathrm{e} 2 \rightarrow \mathrm{e} 1 \mathrm{e} 3$
- Here's how we would require left-to-right order
$\frac{\mathrm{e} 1 \rightarrow \text { e3 }}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \text { e3 e2 }}$
$\mathrm{e} 1=\mathrm{y}$ or e1 $=\lambda \mathrm{x} . \mathrm{e}$
$\mathrm{e} 2 \rightarrow \mathrm{e} 3$
- The second rule prohibits evaluating e2 except when e1 cannot be evaluated further

Call by Name

- Instead of the CBV strategy, we can specifically choose to perform beta-reduction before we evaluate the argument
- This is known as call-by-name (CBN)
- This is the Lazy small-step approach
$\frac{\mathrm{e} 1 \rightarrow \text { e3 }}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \text { e3 e2 }}$
$(\lambda x . e 1) \mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$

CBN Reduction

- CBV
- ($\lambda z . z)((\lambda y . y) x) \rightarrow(\lambda z . z) x \rightarrow x$
- CBN
- ($\lambda z . z)((\lambda y . y) x) \rightarrow(\lambda y . y) x \rightarrow x$

Beta Reductions (CBN)

$(\lambda x . x(\lambda y . y))(u r) \rightarrow$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow$

Beta Reductions (CBN)

($\lambda x . x(\lambda y . y))(u r) \rightarrow(u r)(\lambda y . y)$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow(\lambda w .(y z) w)$

Why Does This Matter?

- The rules we just showed are very common for programming languages based on LC
- CBV is the most common (e.g. OCaml, Java)
- CBN does come up (Haskell uses a variant known as "call-by-need") but is much less common
- Interestingly: more programs terminated under call-by-name. Can you think of why?
- Consider: ($\lambda x . e 2$) e1,
- What if e1 would never terminate, but e2 would?

Evaluating Within a Function

- Our original rules had evaluation under the lambda
- Where does this help us?

$$
(\lambda x . e 1) \text { e2 } \rightarrow \text { e1[x:=e2] }
$$

Partial Evaluation

- That rule is useful when you have a betareduction under a lambda:
- ($\lambda \mathrm{y} .(\lambda z . z)$ y x$) \rightarrow(\lambda y . \mathrm{y} x)$
- Called partial evaluation
- Can combine with CBN or CBV (just add in the rule)
- In practical languages, this evaluation strategy is employed in a limited way, as compiler optimization

Static Scoping \& Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
- $(\lambda x . x(\lambda x . x)) z \rightarrow$?
> The rightmost " x " refers to the second binding
- This is a function that
> Takes its argument and applies it to the identity function
- This function is "the same" as ($\lambda x . x(\lambda y . y)$)
- Renaming bound variables consistently preserves meaning
> This is called alpha-renaming or alpha conversion
- Ex. $\lambda x . x=\lambda y . y=\lambda z . z \quad \lambda y . \lambda x . y=\lambda z . \lambda x . z$

Quiz \#5

Which of the following expressions is alpha equivalent to (alpha-converts from)

($\lambda x . \lambda y . x y) y$

a) $\lambda \mathrm{y}$. y y
b) λz. y z
c) $(\lambda x . \lambda z, x z) y$
d) $(\lambda x, \lambda y, x y) z$

Quiz \#5

Which of the following expressions is alpha equivalent to (alpha-converts from)

($\lambda x . \lambda y . x y) y$

a) $\lambda \mathrm{y}$. y y
b) λz. $y z$
c) $(\lambda x . \lambda z . x z) y$
d) $(\lambda x, \lambda y, x y) z$

Getting Serious about Substitution

- We have been thinking informally about substitution, but the details matter
- So, let's carefully formalize it, to help us see where it can get tricky!

Defining Substitution

- Use recursion on structure of terms
- $x[x:=e]=e \quad / / ~ R e p l a c e ~ x ~ b y ~ e ~$
- $y[x:=e]=y \quad / / y$ is different than x, so no effect
- (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])
// Substitute both parts of application
- ($\left.\lambda x . e^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=\lambda x . \mathrm{e}^{\prime}$
$>$ In $\lambda x . e^{\prime}$, the x is a parameter, and thus a local variable that is different from other x's. Implements static scoping.
> So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e'
- ($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=$?
> The parameter y does not share the same name as x, the variable being substituted for
> Is $\lambda \mathrm{y}$.(e’[x:=e]) correct? No...

Variable Capture

- How about the following?
- ($\lambda x . \lambda y . x$ y) y \rightarrow ?
- When we replace y inside, we don't want it to be captured by the inner binding of y , as this violates static scoping
- l.e., ($\lambda x . \lambda y . x$ y) y $\neq \lambda y . \mathrm{y}$ y
- Solution
- ($\lambda x . \lambda y . x y)$ is "the same" as ($\lambda x . \lambda z . x z$)
> Due to alpha conversion
- So alpha-convert ($\lambda x . \lambda y . x$ y) y to ($\lambda x . \lambda z . x z$) y first
> Now ($\lambda x . \lambda z . x z) y \rightarrow \lambda z . y z$

Completing the Definition of Substitution

- Recall: we need to define ($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]$
- We want to avoid capturing (free) occurrences of y in e
- Solution: alpha-conversion!
> Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
> Replace all occurrences of y in e' by w.
> Then replace all occurrences of x in e' by e!
- Formally:
($\left.\lambda \mathrm{y} \cdot \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=\lambda \mathrm{w} .\left(\left(\mathrm{e}^{\prime}[\mathrm{y}:=\mathrm{w}]\right)[\mathrm{x}:=\mathrm{e}]\right)$ (w is fresh)

Beta-Reduction, Again

-Whenever we do a step of beta reduction

- ($\lambda x . e 1$) $\mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)
- Examples
- ($\lambda x . \lambda y . x y) y=(\lambda x . \lambda z . x z) y \rightarrow \lambda z . y z \quad / / y \rightarrow z$
- $(\lambda x . x(\lambda x . x)) z=(\lambda y . y(\lambda x . x)) z \rightarrow z(\lambda x . x) / / x \rightarrow y$

Quiz \#6

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

A. $y(\lambda z . z y)$
B. $z(\lambda y . y z)$
C. $y(\lambda y . y$ y)
D. $\mathrm{y} y$

Quiz \#6

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

A. $y(\lambda z . z y)$
B. $z(\lambda y . y z)$
C. $y(\lambda y . y$ y)
D. $\mathrm{y} y$

