CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Spring 2021

Turing Machine

Infinite T ape
1 o|o ol1/111 o
N\

‘ Read / Write Head

Control Unit

(Stere v)

CMSC 330 Spring 2021

Turing Completeness

» Turing machines are the most powerful
description of computation possible
e They define the Turing-computable functions
» A programming language is Turing complete if
e |t can map every Turing machine to a program
e A program can be written to emulate a Turing machine
e |t is a superset of a known Turing-complete language

» Most powerful programming language possible
e Since Turing machine is most powerful automaton

CMSC 330 Spring 2021 8

Programming Language Expressiveness

» So what language features are needed to express
all computable functions?
e \What's a minimal language that is Turing Complete?

» Observe: some features exist just for convenience

e Multi-argument functions foo(a, b, c)
» Use currying or tuples

e Loops while (a < D) ...
> Use recursion
e Side effects a:.=1

» Use functional programming pass “heap” as an argument to
each function, return it when with function’s resuilt:
effectful : '‘a — 's —» (‘s * 'a)

CMSC 330 Spring 2021 9

Programming Language Expressiveness

» It is not difficult to achieve Turing Completeness
e |Lots of things are ‘accidentally’ TC

» Some fun examples:
e Xx86 64 mov instruction
e Minecraft
e Magic: The Gathering
e Java Generics

» There’s a whole cottage industry of proving things
to be TC

» But: What is a “core” language that is TC?

CMSC 330 Spring 2021 10

» Proposed in 1930s by

Lambda Calculus (A-calculus)
e Alonzo Church
(born in Washingon DC!)

o/
» Formal system ‘

e Designed to investigate functions & recursion
e For exploration of foundations of mathematics

» Now used as

e Tool for investigating computability

e Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

-

CMSC 330 Spring 2021 11

Why Study Lambda Calculus?

» Itis a “core” language
e Very small but still Turing complete

» But with it can explore general ideas
e | anguage features, semantics, proof systems,
algorithms, ...
» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!

o C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

e Excel, as of 2021!

CMSC 330 Spring 2021 12

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (fun def)
| ee application (fun call)

» This grammar describes ASTs; not for parsing - ambiguous!
» Lambda expressions also known as lambda terms

o Ax.eislike (fun x -> e) in OCaml

That's it! Nothing but higher-order functions

CMSC 330 Spring 2021 13

Lambda Calculus Syntax Ambiguity

» How Is parsing ambiguous?
» Let’s try: AX.x X

L
E>V|L|A AV A
L — AV.E
A—>EE
Vov|e V V V

CMSC 330 Spring 2021

14

Lambda Calculus Syntax Ambiguity

» How Is parsing ambiguous?
» Let’s try: AX.x X

A
E->VJ|L|A L V
L — AV.E
A—EE)\ V . V X
Vovl|e

CMSC 330 Spring 2021

15

Lambda Calculus Syntax

» While this means that our grammar is not so
useful for parsing, it is still useful for write LC
terms if we follow some conventions

» Almost all literature you will find uses two
syntactic conventions

» We add a third convention that is very common
'syntactic sugar’ for ease of reading larger LC
terms

CMSC 330 Spring 2021 16

Disambiguating: Three Conventions

» Scope of A extends as far right as possible
e Subject to scope delimited by parentheses
e AX. Ay.X Y is same as AX.(Ay.(x y))

» Function application is left-associative
e Xyzis(xy)z
e Same rule as OCami

» As a convenience, we use the following “syntactic
sugar” for local declarations
e let x=e1ine2is short for (Ax.e2) e1

CMSC 330 Spring 2021 17

Warmup Quiz

» Revisiting Ax.x x considering our conventions
» Which parse tree is it?

ESVILIA L A
L — AV.E
Vovl|e

V V V AV V

CMSC 330 Spring 2021

18

Warmup Quiz

» Revisiting Ax.x x considering our conventions
» Which parse tree is it?

E—-V]|L|A | A
L —> AV.E
A—EE
Vovl|e A v ' A L
V V V AV V

CMSC 330 Spring 2021

19

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A. True
B. False

CMSC 330 Spring 2021 20

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A.True
B. False

CMSC 330 Spring 2021 21

Quiz #2

This term is equivalent to which of
the following?

Ax.x a b

A. (Ax.x) (a b)
B. (((Ax.x) a) b)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Spring 2021

22

Quiz #2

This term is equivalent to which of
the following?

Ax.x a b

A. (Ax.x) (a b)
B. (((Ax.x) a) b)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Spring 2021

23

But what does it mean?

» Many ways to define the semantics of LC
» We will look at two

- Operational Semantics
- Definitional Interpreter

CMSC 330 Spring 2021

24

Lambda Calculus Semantics

» Evaluation: All that’s involved are function calls
(Ax.e1) e2

e Evaluate e1 with x replaced by e2

» This application is called beta-reduction
o (Ax.e1) e2 — el[x:=e2]
» e1[x:=e2] is e1 with occurrences of x replaced by e2
» This operation is called substitution

» Replace formals with actuals
« Instead of using environment to map formals to actuals

e \We allow reductions to occur anywhere in a term
» Order reductions are applied does not affect final value!

» When a term cannot be reduced further it is in
beta normal form

CMSC 330 Spring 2021 25

Beta Reduction Example

» (AX.AzXZ) Y
— (AX.(Az.(x 2))) ¥y

€)

— (MX.(Az.(x 2))) ¥
(.

—)\Z(y Z)

// since A extends to right

/I apply (Ax.e1) e2 — el[x:=e2]
[l where el =Az.(xz),e2 =y

// final result

» Equivalent OCaml code
e (funx->(funz->(xz))y — funz->(yz)

CMSC 330 Spring 2021

Parameters
e Formal
e Actual

26

Big-Step Operational Semantics

» Beta reduction says how to evaluate a single call

» It doesn’t say how to evaluate a term with many
function calls in it

» WWe can use operational semantics to “fully
evaluate” a term in one “big step”

Beta reduction, here (Ax.e1) U (Ax.el)

N~

el U (Ax.e3) e2l ed e3[x=e4]l ed
ele2led

CMSC 330 Spring 2021 27

Two Varieties

» There are two common variants of big-step
semantics

« Eager evaluation (aka strict, or call by value)
. Lazy evaluation (aka call by name)

CMSC 330 Spring 2021

28

Eager

» Notice that we evaluated the argument e2 before
performing the beta-reduction

» This is the first version we saw
» Hence, eager

(Ax.e1) U (Ax.e1)

el U (Ax.e3) e2l ed4d e3[x=ed4]l ed
ele2l ed

CMSC 330 Spring 2021 29

Lazy

» Alternatively, we could have performed beta
reduction without evaluating e2; use it as is

. Hence, lazy

(Ax.e1) U (Ax.e1)

el U (Ax.e3) e3[x:=e2] | e4
ele2l e4

CMSC 330 Spring 2021

30

Small Step Semantics

» Operational semantics rules we have seen have
always been “"big step’, i.e., complete evaluation

» e U e says that e will terminate as e’

» This is a little unsatisfying
» It doesn’t account for nontermination
» It doesn’t identify where a program fails to progress

» Small-step semantics addresses these problems
» € — e’ In small-step says e takes one step to e’

» We say a term e1 can be beta-reduced to term e2 if e
steps to e2 after one or more steps

CMSC 330 Spring 2021 31

Small-Step Rules of LC

» Here are the “small-step” (-) rules:

el - e2
(Ax.e1) — (Ax.e2)

e2 — ed el — e3

ele2 —-ele3 el e2 - e3 e2

(Ax.e1) e2 — el[x:=e2]

CMSC 330 Spring 2021

32

Evaluation Strategies

» These rules are highly flexible

» It might be that for a given program, there are several
possible rules that could apply

» Typically, a programming language will choose an
evaluation strategy which is described by using
only a subset of these rules. Examples:

» Call by Value
» Call by Need
» Partial Evaluation

CMSC 330 Spring 2021 33

Call by Value

» Before doing a beta reduction, we make sure the
argument cannot, itself, be further evaluated

» This is known as call-by-value (CBV)
» This is the Eager big step approach

el - e3 e2 — e3

ele2 - e3 e2 el1e2 - el e3

e =(A\x.e2)ore=y

(Ax.e1) e — el[x:=€]

CMSC 330 Spring 2021 34

Beta Reductions (CBV)

» (AX.X)Zz — Z
» (AXYy)Zz— Y

» (AXXY)Z— zy

e A function that applies its argument to y

CMSC 330 Spring 2021

35

Beta Reductions (CBV)

» (AXXY) (Az.2) > (Az.2)y —> YV

» (AXCAYXY)Z— Ayzy
e A curried function of two arguments
e Applies its first argument to its second

> (MCAY.XY) (AZ.2Z) X = (\y (\z.z2)y)x — (AZ.ZZ)X —X X

CMSC 330 Spring 2021 36

Quiz #3

(Ax.y) z can be beta-reduced to

Ay

B.y =z

C.z

D. cannot be reduced

CMSC 330 Spring 2021

37

Quiz #3

(Ax.y) z can be beta-reduced to

A. .y

B.y =z

C.z

D. cannot be reduced

CMSC 330 Spring 2021

38

Quiz #4

Which of the following reduces to Az. z?

a) (Ay.Az.Xx)z
b) (Az.AX.2)y
) (AY.Y) (AX. Az. Z2) W
) (AY. AX. 2) z (Az. 2)

@

d

CMSC 330 Spring 2021

39

Quiz #4

Which of the following reduces to Az. z?

a) (Ay.Az.Xx)z

b) (Az.AX.2)y

c) (Ay.y) (AX.Az.z)w
d) (Ay.AX.z)z (Az. 2)

CMSC 330 Spring 2021 40

Evaluation Order

» The CBV rules we saw permit small-stepping
either the function part or the argument part

» If both are possible, the rules allow either one

el - e3 e2 — e3

ele2 - e3 e2 el1e2 - el e3

» Here's how we would require left-to-right order

el - e3 el=y or el=Axe

ele2 — e3 e2 e2 — e3
ele2 - el e3

» The second rule prohibits evaluating e2 except when
e1 cannot be evaluated further

CMSC 330 Spring 2021 41

Call by Name

» Instead of the CBYV strategy, we can specifically
choose to perform beta-reduction before we
evaluate the argument

» This is known as call-by-name (CBN)
» This is the Lazy small-step approach

el - e3

el1e2 - e3 e2

(Ax.e1) e2 — el[x:=e2]

CMSC 330 Spring 2021 42

CBN Reduction

» CBV
o (Az.2) ((Ay.y) X) — (Az.2) X — X

» CBN
o (Az.z) ((Ay.y) X) — (Ay.y) X — X

CMSC 330 Spring 2021

43

Beta Reductions (CBN)

(AX.X (AY.y)) (ur) —

(AX.(AW. X W)) (Y 2) —

CMSC 330 Spring 2021

44

Beta Reductions (CBN)

(AX.X (Ay.y)) (ur) — (ur) (Ay.y)

(AX.(Aw. X W)) (Y 2) — (Aw. (Y 2) W)

CMSC 330 Spring 2021

45

Why Does This Matter?

» The rules we just showed are very common for
programming languages based on LC
» CBV is the most common (e.g. OCaml, Java)

» CBN does come up (Haskell uses a variant known as
“call-by-need”) but is much less common

» Interestingly: more programs terminated under
call-by-name. Can you think of why?

« Consider: (Ax.e2) ef,
« What if e1 would never terminate, but e2 would?

CMSC 330 Spring 2021 46

Evaluating Within a Function

» Our original rules had evaluation under the lambda
» Where does this help us?

el —» e2
(Ax.e1) — (Ax.e2)

e2 — ed el — e3
ele2 —-elel el e2 - e3d e2

(Ax.e1) e2 — el[x:=e2]

CMSC 330 Spring 2021 47

Partial Evaluation

» That rule is useful when you have a beta-
reduction under a lambda:
* (Ay.(Az.z) y x) — (Ay.y X)

» Called partial evaluation

e Can combine with CBN or CBYV (just add in the rule)

¢ |n practical languages, this evaluation strategy is
employed in a limited way, as compiler optimization

int foo(int x) { int foo(int x) {
return 0+x;, —> return x;

} }

CMSC 330 Spring 2021 48

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following
o (AX.X (AX.X))z — 7?
» The rightmost “x” refers to the second binding

e This is a function that
» Takes its argument and applies it to the identity function

» This function is “the same” as (Ax.x (Ay.y))

e Renaming bound variables consistently preserves meaning
» This is called alpha-renaming or alpha conversion

o EX. AXXX=Ay.y=Az.z Ay.AX.y = AzZ.AX.Z

CMSC 330 Spring 2021 49

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy) Yy

CMSC 330 Spring 2021

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy) Yy

a)Ay.yy
b)A\z.y z

Cc) (AX.Az.x2)y
d) (AX. Ay. Xy) z

CMSC 330 Spring 2021

51

Getting Serious about Substitution

» We have been thinking informally about
substitution, but the details matter

» S0, let’s carefully formalize it, to help us see
where it can get tricky!

CMSC 330 Spring 2021

52

Defining Substitution

» Use recursion on structure of terms
o X[x:=e]=¢e // Replace x by e
o y[xi=e|=y //'y is different than x, so no effect
o (el e2)[x:=e] = (el[x:=€]) (e2[x:=¢])
/[Substitute both parts of application
e (Ax.e')[x:=e] = Ax.e’

» In Ax.e’, the x is a parameter, and thus a local variable that is
different from other x’s. Implements static scoping.

» So the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in €’

e (Ay.e))[x:=e] =7
» The parameter y does not share the same name as x, the
variable being substituted for

> Is Ay.(e’[x:=e]) correct? No...

CMSC 330 Spring 2021 53

Variable Capture

» How about the following?
o (AXXAYXyYy)y —?

e \When we replace y inside, we don’t want it to be
captured by the inner binding of y, as this violates
static scoping

o le., (AXAYXY)Yy#FAyyy

» Solution

e (AX.Ay.xy) is “the same” as (AX.Az.X z)
» Due to alpha conversion

e S0 alpha-convert (AX.Ay.xy) y to (AX.Az.x z) y first

> Now (AX.Azxz)y — Az.y z

CMSC 330 Spring 2021

54

Completing the Definition of Substitution

» Recall: we need to define (Ay.e’)[x:=€]
e \We want to avoid capturing (free) occurrences of y in e

e Solution: alpha-conversion!
» Change y to a variable w that does not appear in e’ or e
(Such a w is called fresh)
» Replace all occurrences of y in e’ by w.
» Then replace all occurrences of x in €’ by e!
» Formally:

(Ay.€’)[x:=e] = Aw.((e’ [y:=w]) [x:=€]) (w is fresh)

CMSC 330 Spring 2021 55

Beta-Reduction, Again

» Whenever we do a step of beta reduction
o (Ax.e1) e2 — el[x:=e2]
¢ \We must alpha-convert variables as necessary

e Sometimes performed implicitly (w/o showing
conversion)

» Examples

o (AXAY.XY)Y=(AX.AzXZ2)y — Azy Z Iy — z
o (AX.X (AX.X)) z=(Ay.y (AX.X))Zz >z (AX.X) /[x—Yy

CMSC 330 Spring 2021

56

Quiz #6

Beta-reducing the following term produces what
result?

(AX.X AY.Yy X) y

OO >
< << N X
>
<
<
<

CMSC 330 Spring 2021

o7

Quiz #6

Beta-reducing the following term produces what
result?

(AX.X AY.Yy X) y

A. y(Az.zy)
B. z (Ay.y 2)
C. y(Ay.yy)
D. yy

CMSC 330 Spring 2021

58

