
CMSC 330: Organization of
Programming Languages

Lambda Calculus

1CMSC 330 Spring 2021

Quiz #7
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z

b) λx. w z

c) w z

d) Does not reduce

59CMSC 330 Spring 2021

Quiz #7
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z

c) w z

d) Does not reduce

60CMSC 330 Spring 2021

61

Lambda Calc, Impl in OCaml

e ::= x

| λx.e

| e e

y

λx.x

λx.λy.x y

(λx.λy.x y) λx.x x

type id = string
type exp = Var of id
| Lam of id * exp
| App of exp * exp

Var “y”
Lam (“x”, Var “x”)
Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))

App
(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))),
Lam (“x”, App (Var “x”, Var “x”)))

CMSC 330 Spring 2021

Quiz #8

What is this term’s AST?

λx.x x

62

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

CMSC 330 Spring 2021

Quiz #8

What is this term’s AST?

λx.x x

63

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

CMSC 330 Spring 2021

OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =
match m with

Var x ->
if y = x then e (* substitute *)
else m (* don’t subst *)

| App (e1,e2) ->
App (subst e1 y e, subst e2 y e)

| Lam (x,e0) -> …

64

m[y:=e]

CMSC 330 Spring 2021

OCaml Impl: Substitution (cont’d)
(* substitute e for y in m-- *)
let rec subst m y e = match m with …

| Lam (x,e0) ->
if y = x then m
else if not (List.mem x (fvs e)) then
Lam (x, subst e0 y e)

else
let z = newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

65

Shadowing blocks

substitution

Safe: no capture possible

Might capture; need to α-convert

CMSC 330 Spring 2021

m[y:=e]

CBV, L-to-R Reduction with Partial Eval
let rec reduce e =
match e with

App (Lam (x,e), e2) -> subst e x e2
| App (e1,e2) ->
let e1' = reduce e1 in
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2)

| Lam (x,e) -> Lam (x, reduce e)
| _ -> e

66

Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body

CMSC 330 Spring 2021

67

Another Way to Avoid Capture
Another way to avoid accidental variable
capture is to use the “Barendregt Convention”:
gives everything ‘fresh’ names.

l If every name is unique, no chance of variable
capture

l Simple, but not great for performance as you
have to do it after every beta-reduction!

CMSC 330 Spring 2021

Quick Recap on LC
Despite its simplicity (3 AST nodes and a handful of
small-step rules), LC is Turing Complete
Any function that can be evaluated on a Turing
machine can be encoded into LC (and vice-versa)
- But we’ll have to come up with the encodings!

To prove that it is Turing Complete we have to map
every possible Turing Machine to LC
- We won’t be doing that

68CMSC 330 Spring 2021

69

The Power of Lambdas

To give a sense of how one can encode various
constructs into LC we’ll be looking at some
concrete examples:
• Let bindings

• Booleans

• Pairs

• Natural numbers & arithmetic

• Looping

CMSC 330 Spring 2021

Let bindings

Local variable declarations are like defining a
function and applying it immediately (once):
• let x = e1 in e2 = (λx.e2) e1

Example
• let x = (λy.y) in x x = (λx.x x) (λy.y)

where

(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y)

70CMSC 330 Spring 2021

71

Booleans

Church’s encoding of mathematical logic
• true = λx.λy.x

• false = λx.λy.y

• if a then b else c
Ø Defined to be the expression: a b c

Examples
• if true then b else c = (λx.λy.x) b c → (λy.b) c → b

• if false then b else c = (λx.λy.y) b c → (λy.y) c → c

CMSC 330 Spring 2021

72

Booleans (cont.)

Other Boolean operations
• not = λx.x false true

Ø not x = x false true = if x then false else true

Ø not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false

Ø and x y = if x then y else false

• or = λx.λy.x true y

Ø or x y = if x then true else y

Given these operations
• Can build up a logical inference system

CMSC 330 Spring 2021

Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y

y x y

73

true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true

CMSC 330 Spring 2021

Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y
y x y

74

true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true

CMSC 330 Spring 2021

75

Pairs
Encoding of a pair a, b
• (a,b) = λx.if x then a else b

• fst = λf.f true

• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →

(λx.if x then a else b) true →

if true then a else b → a

• snd (a,b) = (λf.f false) (λx.if x then a else b) →

(λx.if x then a else b) false →

if false then a else b → b

CMSC 330 Spring 2021

76

Natural Numbers (Church* Numerals)

Encoding of non-negative integers
• 0 = λf.λy.y

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

• 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>

• Formally: n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)
CMSC 330 Spring 2021

Quiz #10

What OCaml type could you give to a Church-
encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b

(‘a -> ‘a) -> ‘a -> ‘a

(‘a -> ‘a) -> ‘b -> int

(int -> int) -> int -> int

77

n = λf.λy.<apply f n times to y>

CMSC 330 Spring 2021

Quiz #10

What OCaml type could you give to a Church-
encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b

(‘a -> ‘a) -> ‘a -> ‘a
(‘a -> ‘a) -> ‘b -> int

(int -> int) -> int -> int

78

n = λf.λy.<apply f n times to y>

CMSC 330 Spring 2021

79

Operations On Church Numerals

Successor
• succ = λz.λf.λy.f (z f y)

Example
• succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →

λf.λy.f ((λf.λy.y) f y) →

λf.λy.f ((λy.y) y) →

λf.λy.f y

= 1

Since (λx.y) z → y

• 0 = λf.λy.y

• 1 = λf.λy.f y

CMSC 330 Spring 2021

80

Operations On Church Numerals (cont.)

IsZero?
• iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

Example
• iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →

(λf.λy.y) (λy.false) true →

(λy.y) true →

true

• 0 = λf.λy.y

Since (λx.y) z → y

CMSC 330 Spring 2021

81

Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)
• Can also encode various arithmetic operations

Addition
• M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)

Ø In prefix notation (+ M N)

Multiplication
• M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y

Ø In prefix notation (* M N)

CMSC 330 Spring 2021

82

Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.(1 x) (1 x y) =

• λx.λy.((λf.λy.f y) x) (1 x y) →

• λx.λy.(λy.x y) (1 x y) →

• λx.λy.x (1 x y) →

• λx.λy.x ((λf.λy.f y) x y) →

• λx.λy.x ((λy.x y) y) →

• λx.λy.x (x y) = 2

With these definitions
• Can build a theory of arithmetic

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

CMSC 330 Spring 2021

83

Arithmetic Using Church Numerals

What about subtraction?
• Easy once you have ‘predecessor’, but...

• Predecessor is very difficult!

Story time:
• One of Church’s students, Kleene (of Kleene-star

fame) was struggling to think of how to encode

‘predecessor’, until it came to him during a trip to the

dentists office.

• Take from this what you will

Wikipedia has a great derivation of
‘predecessor’, not enough time today.

CMSC 330 Spring 2021

84

Looping+Recursion

So far we have avoided self-reference, so how
does recursion work?

We can construct a lambda term that ‘replicates’
itself:

• Define D = λx.x x, then
l D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

• D D is an infinite loop

We want to generalize this, so that we can make
use of looping

CMSC 330 Spring 2021

85

The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))

Then
Y F =

(λf.(λx.f (x x)) (λx.f (x x))) F →

(λx.F (x x)) (λx.F (x x)) →

F ((λx.F (x x)) (λx.F (x x)))

= F (Y F)

Y F is a fixed point (aka fixpoint) of F

Thus Y F = F (Y F) = F (F (Y F)) = ...
• We can use Y to achieve recursion for F

CMSC 330 Spring 2021

86

Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
• The second argument to fact is the integer

• The first argument is the function to call in the body

Ø We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1

→ if 1 = 0 then 1 else 1 * ((Y fact) 0)

→ 1 * ((Y fact) 0)

= 1 * (fact (Y fact) 0)

→ 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

→ 1 * 1 → 1

CMSC 330 Spring 2021

Factorial 4=?

CMSC 330 Spring 2021 87

(Y G) 4
G (Y G) 4
(λr.λn.(if n = 0 then 1 else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24

88

Discussion
Lambda calculus is Turing-complete
• Most powerful language possible

• Can represent pretty much anything in “real” language

Ø Using clever encodings

But programs would be
• Pretty slow (10000 + 1 → thousands of function calls)

• Pretty large (10000 + 1 → hundreds of lines of code)

• Pretty hard to understand (recognize 10000 vs. 9999)

In practice
• We use richer, more expressive languages

• That include built-in primitives

CMSC 330 Spring 2021

89

The Need For Types
Consider the untyped lambda calculus
• false = λx.λy.y

• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

Ø false 0 → λy.y

Ø if 0 then ...

…because everything evaluates to some function

The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)

• All operations take machine words to machine words

CMSC 330 Spring 2021

90

Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e
• Added integers n as primitives

Ø Need at least two distinct types (integer & function)…

Ø …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t
• int is the type of integers

• t1 → t2 is the type of a function

Ø That takes arguments of type t1 and returns result of type t2

CMSC 330 Spring 2021

Types are limiting

STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
• Cannot type check Y in STLC

Ø Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing
• A normal form is one that cannot be reduced further

Ø A value is a kind of normal form

• Strong normalization means STLC terms always

terminate

Ø Proof is not by straightforward induction: Applications

“increase” term size

91CMSC 330 Spring 2021

92

Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using

only functions

Ø These encodings are enlightening – make you a better

(functional) programmer

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof

systems, etc. can be developed in lambda calculus,

Ø then scaled to full languages

CMSC 330 Spring 2021

