CMSC 330: Organization of Programming Languages

Lambda Calculus

Quiz \#7

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y y) w z
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

Quiz \#7

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y y) w z
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

Lambda Calc, ImpI in OCaml

$$
\begin{aligned}
& \text { type id }=\text { string } \\
& \text { type exp }=\text { Var of id } \\
& \text { | Lam of id * exp } \\
& \text { | App of exp * exp } \\
& \text { - e ::= x } \\
& \text { | 入x.e } \\
& \text { | e e } \\
& y \quad \operatorname{Var} " y \text { " } \\
& \lambda x . \mathrm{X} \\
& \lambda x \cdot \lambda y \cdot x y \\
& \text { Lam ("x", Var "x") }
\end{aligned}
$$

App

$$
\begin{aligned}
& \text { Lam ("x", App (Var "x", Var "x"))) }
\end{aligned}
$$

Quiz \#8

What is this term's AST? type id = string

$$
\begin{aligned}
& \text { type } \exp = \\
& \quad \text { Var of id } \\
& \text { | Lam of id } \exp \\
& \text { | App of exp * exp }
\end{aligned}
$$

A. App (Lam ("x", Var "x"), Var "x") B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x", Var "x"))
D. App (Lam ("x", App ("x", "x")))

Quiz \#8

What is this term's AST? type id $=$ string

$$
\begin{aligned}
& \text { type } \exp = \\
& \quad \text { Var of id } \\
& \text { | Lam of id * exp } \\
& \text { | App of exp * exp }
\end{aligned}
$$

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x", Var "x"))
D. App (Lam ("x", App ("x", "x")))

OCaml Implementation: Substitution

(* substitute e for y in $m--\quad m[y:=e] \quad$)
let rec subst m ye =
match m with
Var x->
if $y=x$ then e (* substitute *)
else m (* don't subst *)
| App (e1,e2) ->
App (subst el y e, subst en y e)
| Lam (x,eO) -> ...

OCaml ImpI: Substitution (contd)

(* substitute e for y in $m--\quad \mathrm{m}[\mathrm{y}:=\mathrm{e}] \quad$ *)
let rec subs m y e $=$ match m with ...
| Lam (x,eO) ->
if $y=x$ then m
Shadowing blocks substitution
else if not (List.mem x (fvs e)) then
Lam (x, subs el y e) Safe: no capture possible
else Might capture; need to α-convert
let $z=$ newvar() in (* fresh *)
let en' = subst eU x (Var z) in
Lam (z,subst eU' ye)

CBV, L-to-R Reduction with Partial Eval

let rec reduce e $=$
match e with Straight β rule
App (Lam (x,e), e2) -> subst e x e2
| App (e1,e2) ->
let e1' = reduce e1 in Reduce lhs of app
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2) Reduce rhs of app
| Lam (x,e) -> Lam (x, reduce e)
1 _ $->$ e
Reduce function body
nothing to do

Another Way to Avoid Capture

- Another way to avoid accidental variable capture is to use the "Barendregt Convention": gives everything 'fresh' names.
- If every name is unique, no chance of variable capture
- Simple, but not great for performance as you have to do it after every beta-reduction!

Quick Recap on LC

- Despite its simplicity (3 AST nodes and a handful of small-step rules), LC is Turing Complete
- Any function that can be evaluated on a Turing machine can be encoded into LC (and vice-versa)
- But we'll have to come up with the encodings!
- To prove that it is Turing Complete we have to map every possible Turing Machine to LC
- We won't be doing that

The Power of Lambdas

- To give a sense of how one can encode various constructs into LC we'll be looking at some concrete examples:
- Let bindings
- Booleans
- Pairs
- Natural numbers \& arithmetic
- Looping

Let bindings

- Local variable declarations are like defining a function and applying it immediately (once):
- let $x=e 1$ in e2 $=(\lambda x . e 2)$ e1
- Example
- let $x=(\lambda y . y)$ in $x x=(\lambda x . x x)(\lambda y . y)$
where
$(\lambda x . x \times)(\lambda y . y) \rightarrow(\lambda x . x x)(\lambda y . y) \rightarrow(\lambda y . y)(\lambda y . y) \rightarrow(\lambda y . y)$

Booleans

- Church's encoding of mathematical logic
- true $=\lambda x . \lambda y . x$
- false $=\lambda x . \lambda y . y$
- if a then b else c
> Defined to be the expression: abc
- Examples
- if true then b else $c=(\lambda * . \lambda y . x) b c \rightarrow(\lambda y . b) c \rightarrow b$
- if false then b else $c=(\lambda x . \lambda y . y) b c \rightarrow(\lambda y . y) c \rightarrow c$

Booleans (cont.)

- Other Boolean operations
- not $=\lambda x$. x false true
$>$ not $x=x$ false true $=$ if x then false else true
$>$ not true \rightarrow (λx.x false true) true \rightarrow (true false true) \rightarrow false
- and $=\lambda x . \lambda y . x$ y false
> and $x y=$ if x then y else false
- or $=\lambda x . \lambda y . x$ true y
> or $x y=$ if x then true else y
- Given these operations
- Can build up a logical inference system

Quiz \#9

What is the lambda calculus encoding of xor $x y$?

- xor true true = xor false false = false
- xor true false $=$ xor false true $=\quad$ true
- $x x y$
- x (y true false) y
- x (y false true) y
- yxy

```
true = \lambdax.\lambday.x
false = \lambdax.\lambday.y
if a then b else c = a b c
not = \lambdax.x false true
```


Quiz \#9

What is the lambda calculus encoding of xor $x y$?

- xor true true = xor false false = false
- xor true false $=$ xor false true $=$ true
- $x x y$
- x (y true false) y
- x (y false true) y
- yxy

```
true = \lambdax.\lambday.x
false = \lambdax.\lambday.y
if a then b else c = a b c
not = \lambdax.x false true
```


Pairs

- Encoding of a pair a, b
- $(a, b)=\lambda x$.if x then a else b
- fst = $\lambda \mathrm{f} . \mathrm{f}$ true
- snd = λ f.f false
- Examples
- fst $(a, b)=(\lambda f . f$ true $)(\lambda x$.if x then a else $b) \rightarrow$ (λx.if x then a else b) true \rightarrow
if true then a else $b \rightarrow a$
- snd $(a, b)=(\lambda f . f$ false $)(\lambda x$.if x then a else $b) \rightarrow$
(λx.if x then a else b) false \rightarrow
if false then a else $b \rightarrow b$

Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
- $0=\lambda f . \lambda y . y$
- 1 = $\lambda f . \lambda y . f$ y
- 2 = $\lambda \mathrm{f} . \lambda \mathrm{\lambda} . \mathrm{f}$ (f y)
- 3 = $\lambda \mathrm{f} . \lambda y . f(f(f y))$
i.e., $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y}$.<apply f n times to y >
- Formally: $n+1=\lambda f . \lambda y . f(n f y)$
*(Alonzo Church, of course)

Quiz \#10

 $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y} .<a p p l y \mathrm{f} n$ times to $\mathrm{y}>$What OCaml type could you give to a Churchencoded numeral?

- ('a -> 'b) -> 'a -> 'b
- ('a -> 'a) -> 'a -> 'a
- ('a -> 'a) -> 'b -> int
- (int -> int) $->$ int $->$ int

Quiz \#10 $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y} .<a \operatorname{coply} \mathrm{f} \mathrm{n}$ times to $\mathrm{y}>$

What OCaml type could you give to a Churchencoded numeral?

- ('a -> 'b) -> 'a -> 'b
- ('a ->'a) -> 'a -> 'a
- ('a -> 'a) -> 'b -> int
- (int -> int) -> int -> int

Operations On Church Numerals

- Successor
- $\operatorname{succ}=\lambda z . \lambda f . \lambda y . f(z f y)$
- $0=\lambda f . \lambda y . y$
- $1=\lambda f . \lambda y . f$ y
- Example
- succ $0=$
($\lambda z . \lambda f . \lambda y . f(z f y))(\lambda f . \lambda y . y) \rightarrow$
$\lambda f . \lambda y . f((\lambda f . \lambda y . y) f y) \rightarrow$
$\lambda f . \lambda y . f((\lambda y . y) y) \rightarrow$
$\lambda f . \lambda y . f y$
= 1

Operations On Church Numerals (cont.)

- IsZero?
- iszero = $\lambda z . z$ (λ y.false) true

This is equivalent to $\lambda z .((z$ (λ y.false $))$ true)

- Example
- iszero $0=$
- $0=\lambda f . \lambda y . y$
($\lambda z . z$ (λy.false) true) ($\lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{y}$) \rightarrow
(λ f. $\lambda \mathrm{y} . \mathrm{y}$) ($\lambda \mathrm{y}$. false) true \rightarrow
($\lambda \mathrm{y} . \mathrm{y}$) true \rightarrow
Since ($\lambda x . y$) $z \rightarrow y$
true

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
- Can also encode various arithmetic operations
- Addition
- $\mathrm{M}+\mathrm{N}=\lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{M} \mathrm{f}(\mathrm{Nf} \mathrm{y})$

Equivalently: + = $\lambda \mathrm{M} . \lambda \mathrm{N} . \lambda \mathrm{f} . \lambda y . \mathrm{M} \mathrm{f} \mathrm{(N} \mathrm{f} \mathrm{y)}$
$>$ In prefix notation (+ M N)

- Multiplication
- M * $N=\lambda f . M(N f)$

Equivalently: * = $\lambda \mathrm{M} . \lambda \mathrm{N} . \lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{M}(\mathrm{Nf})$ y
> In prefix notation (* M N)

Arithmetic (cont.)

- Prove 1+1 = 2
- $1+1=\lambda x \cdot \lambda y .(1 x)(1 x y)=$
- $1=\lambda f . \lambda y . f$ y
- $\lambda x . \lambda y .((\lambda f . \lambda y . f y) x)(1 \times y) \rightarrow$
- $\lambda x . \lambda y .(\lambda y . x y)(1 x y) \rightarrow$
- $\lambda x . \lambda y . x(1 \times y) \rightarrow$
- $\lambda x . \lambda y . x((\lambda f . \lambda y . f y) x y) \rightarrow$
- $\lambda x . \lambda y . x((\lambda y . x y) y) \rightarrow$
- $\lambda x \cdot \lambda y . x(x y)=2$
- With these definitions
- Can build a theory of arithmetic

Arithmetic Using Church Numerals

- What about subtraction?
- Easy once you have 'predecessor', but...
- Predecessor is very difficult!
- Story time:
- One of Church's students, Kleene (of Kleene-star fame) was struggling to think of how to encode 'predecessor', until it came to him during a trip to the dentists office.
- Take from this what you will
- Wikipedia has a great derivation of 'predecessor', not enough time today.

Looping+Recursion

- So far we have avoided self-reference, so how does recursion work?
- We can construct a lambda term that 'replicates' itself:
- Define $D=\lambda x . x x$, then
- $D \mathrm{D}=(\lambda x . x \mathrm{x})(\lambda x . x \mathrm{x}) \rightarrow(\lambda x . x \mathrm{x})(\lambda x . x \mathrm{x})=\mathrm{D} D$
- D D is an infinite loop
- We want to generalize this, so that we can make use of looping

The Fixpoint Combinator

$Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

- Then

$$
\begin{aligned}
& Y F= \\
& (\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) F \rightarrow \\
& (\lambda x . F(x x))(\lambda x . F(x x)) \rightarrow \\
& F((\lambda x . F(x x))(\lambda x . F(x x))) \\
& =F(Y F)
\end{aligned}
$$

- $\mathrm{Y} F$ is a fixed point (aka fixpoint) of F
- Thus $Y F=F(Y F)=F(F(Y F))=\ldots$
- We can use Y to achieve recursion for F

Example

fact $=\lambda f$. λ n.if $n=0$ then 1 else n * $(f(n-1))$

- The second argument to fact is the integer
- The first argument is the function to call in the body
> We'll use Y to make this recursively call fact
(Y fact) $1=($ fact (Y fact)) 1
\rightarrow if $1=0$ then 1 else $1^{*}((Y$ fact $) 0)$
$\rightarrow 1^{*}$ ((Y fact) 0$)$
$=1$ * (fact (Y fact) 0)
$\rightarrow 1^{*}$ (if $0=0$ then 1 else 0 * ((Y fact) (-1))
$\rightarrow 1$ * $1 \rightarrow 1$

Factorial 4=?

(Y G) 4

```
G (Y G) 4
```

(λr. $\lambda \mathrm{n}$. (if $\mathrm{n}=0$ then 1 else $\mathrm{n} \times(\mathrm{r}(\mathrm{n}-1))$)) (YG) 4
($\lambda \mathrm{n}$. (if $\mathrm{n}=0$ then 1 else $\mathrm{n} \times((\mathrm{Y} G)(\mathrm{n}-1)))$) 4
if $4=0$ then 1 else $4 \times((Y G)(4-1))$
$4 \times(\mathrm{G}(\mathrm{Y} G)(4-1))$
$4 \times((\lambda n .(1$, if $n=0$; else $n \times((Y G)(n-1))))(4-1))$
$4 \times$ (1, if $3=0$; else $3 \times((Y G)(3-1)))$
$4 \times(3 \times(G(Y G)(3-1)))$
$4 \times(3 \times((\lambda n .(1, i f n=0$; else $n \times((Y G)(n-1))))(3-1)))$
$4 \times(3 \times(1$, if $2=0$; else $2 \times((Y G)(2-1))))$
$4 \times(3 \times(2 \times(G(Y G)(2-1))))$
$4 \times(3 \times(2 \times((\lambda n .(1$, if $n=0 ;$ else $n \times((Y G)(n-1))))(2-1))))$
$4 \times(3 \times(2 \times(1$, if $1=0$; else $1 \times((Y G)(1-1)))))$
$4 \times(3 \times(2 \times(1 \times(G(Y G)(1-1)))))$
$4 \times(3 \times(2 \times(1 \times((\lambda n .(1$, if $n=0$; else $n \times((Y G)(n-1))))(1-1)))))$
$4 \times(3 \times(2 \times(1 \times(1, i f 0=0$; else $0 \times((Y G)(0-1))))))$
$4 \times(3 \times(2 \times(1 \times(1))))$
24

Discussion

- Lambda calculus is Turing-complete
- Most powerful language possible
- Can represent pretty much anything in "real" language
> Using clever encodings
- But programs would be
- Pretty slow (10000 + $1 \rightarrow$ thousands of function calls)
- Pretty large (10000 + $1 \rightarrow$ hundreds of lines of code)
- Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
- We use richer, more expressive languages
- That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
- false $=\lambda x . \lambda y . y$
- $0=\lambda x . \lambda y . y$
- Since everything is encoded as a function...
- We can easily misuse terms...
> false $0 \rightarrow \lambda y . y$
$>$ if 0 then ...
...because everything evaluates to some function
- The same thing happens in assembly language
- Everything is a machine word (a bunch of bits)
- All operations take machine words to machine words

Simply-Typed Lambda Calculus (STLC)

- e : : $=\mathrm{n}|\mathrm{x}| \lambda x: t . \mathrm{e} \mid \mathrm{e} \mathrm{e}$
- Added integers n as primitives
> Need at least two distinct types (integer \& function)...
> ...to have type errors
- Functions now include the type t of their argument
- $t::=$ int $\mid t \rightarrow t$
- int is the type of integers
- $\mathrm{t} 1 \rightarrow \mathrm{t} 2$ is the type of a function
> That takes arguments of type t1 and returns result of type t2

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
- Cannot type check Y in STLC
> Or in OCaml, for that matter, at least not as written earlier.
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
- A normal form is one that cannot be reduced further
> A value is a kind of normal form
- Strong normalization means STLC terms always terminate
> Proof is not by straightforward induction: Applications "increase" term size

Summary

- Lambda calculus is a core model of computation
- We can encode familiar language constructs using only functions
> These encodings are enlightening - make you a better (functional) programmer
- Useful for understanding how languages work
- Ideas of types, evaluation order, termination, proof systems, etc. can be developed in lambda calculus,
> then scaled to full languages

