
CMSC 330: Organization of Programming
Languages

Type Systems

1CMSC330 Spring 2021

Types: Recall our Intro to OCaml

Types classify expressions
• Characterize the set of possible values an expression could

evaluate to
• Ex: { …, -1, 0, 1, … } is the set corresponding to int

Ø 34+17 is an expression of type int, since it evaluates to 51, which has
type int

Expression e has type t if e will (always) evaluate to a
value of type t
• Write e : t as shorthand to say e has type t

2

Type Systems

A type system is a series of rules that ascribe types to
expressions
• The rules prove statements e : t

The process of applying these rules is called type
checking
• Or simply, typing
• Type checking aka the program’s static semantics

Different languages have different type systems

3

OCaml Type System: Conditionals

Syntax
• if e1 then e2 else e3

Type checking
• If e1 : bool and e2 : t and e3 : t then if e1 then e2 else
e3 : t

• More formally:

⊢ e1 ! bool ⊢ e2 ! t ⊢ e3 ! t
⊢ if e1 then e2 else e3 ! t

4

Type Safety
A well-typed program is accepted by the language’s type
system

A program going wrong is one that the language’s
semantics gives no definition (undefined)

Ø “Colorless green ideas sleep furiously”
Ø If the program were to be run, anything could happen
Ø char buf[4]; buf[4] = ‘x’; // undefined!

A type-safe language is one in which for every program,
well-typed ⟹ well-defined
• Or, Well-typed programs never go wrong, in the words of Robin

Milner in 1978
5

Not always well defined ⟹ Not well typed
Consider the following OCaml function f

let f x y =

let z = if x<0 then “0” else x in
z/y

f’s execution is defined in some cases
• f 1 1 ⟶ 1
• f 1 0 ⟶ Division_by_zero exception

But not all
• f 1 [2] ↛ since [2] can’t be a divisor
• f “hi” 0 ↛ since “hi” cannot compare with 0
• f -1 2 ↛ since “0” cannot be a dividend

So: f cannot be well typed
• (type system doesn’t prevent all bad arg types) 6

Possibility: Well-defined, not well-typed
In OCaml, the expression 4+"hi" is undefined
• Ocaml’s type system does not typecheck this expression,

ensuring it is never executed
Ø Good!

But the following expressions are well-defined, but still
rejected
• if true then 0 else 4+"hi"

Ø Always evaluates to 0
• let f4 x = if x <= abs x then 0 else 4+"hi"

Ø f4 e evaluates to 0 for all (e : int)

7

Type Safety is Often Conservative

I.e., all well-typed
programs are
well-defined, but
some well-
defined programs
are not well typed

8

Dynamic Type Checking

The run-time checks performed by dynamic languages
often called dynamic type checking
• These languages may be said to have a dynamic type system

The “type” of an expression checked as needed
• Values keep tag, set when the value is created, indicating its type

(e.g., what class it has)

Disallowed operations cause run-time exception
• Type errors may be latent in code for a long time

9

Value, or exception, always
Reconsider our earlier OCaml function, in Ruby

def f(x,y)

if x<0 then z=“0” else z=x end
z/y

end

Its execution is defined in all cases, by throwing an
exception
• f(1,[2]) ⟶ TypeError exception (array not an int)
• f(“hi”,0) ⟶ TypeError exception (can’t compare string and int)
• f(-1,2) ⟶ TypeError exception (no method ‘/’ for string)

In OCaml, each of the above executions was undefined

10

Quiz 1

When is the type of a variable determined in a dynamically
typed language?

A. When the program is compiled
B. At run-time, when the variable is used
C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

11

Quiz 1

When is the type of a variable determined in a dynamically
typed language?

A. When the program is compiled
B. At run-time, when the variable is used
C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

12

Quiz 2

When is the type of a variable determined in a statically
typed language?

A. When the program is compiled
B. At run-time, when the variable is used
C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

13

Quiz 2

When is the type of a variable determined in a statically
typed language?

A. When the program is compiled
B. At run-time, when the variable is used
C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

14

Static vs. Dynamic Type Systems

OCaml, Java, Haskell, etc. are statically typed
Ruby, Python, etc. are dynamically typed
But we can view dynamically typed languages as statically
typed in a particular sense:
• Can view all expressions as having a static type Dyn

Ø The language is uni-typed
• All operations are permitted on values of this type

Ø E.g., in Ruby, all objects accept any method call
• But: Some operations result in a run-time exception

Ø Those not supported by the value’s dynamic “type” (tag)
Ø Nevertheless, such behavior is well defined

15

Soundness and Completeness
Type safety is a soundness property
• That a term type checks implies its execution will be well-defined

Static type systems are rarely complete
• That a term is well-defined does not imply that it will type check

Ø if true then 0 else 4+"hi"

Dynamic type systems are often complete
• All expressions are well defined and (statically) type check
• 4+"hi" well-defined: it gives a run-time exception

16

Type Safe?

Java, Haskell, Ocaml, Ruby, Python: Yes (arguably).
• The languages’ (static) type systems restrict programs to those

that are defined
Ø Caveats: Foreign function interfaces to type-unsafe C, bugs in the

language design, bugs in the implementation, etc.

C, C++: No.
• The languages’ type systems do not prevent undefined behavior

Ø Unsafe casts (int to pointer), out-of-bounds array accesses, dangling
pointer dereferences, etc.

18

What’s Bad about Being Undefined?
Why is being undefined worse than throwing an
exception?
• Because it’s impossible to reason about!

Undefined behavior in C/C++ is traditionally a source of
severe security vulnerabilities
• These are bugs that have security consequences

Stack smashing exploits out-of-bounds array accesses to
inject code into a running program
• Write outside the bounds of an array (undefined!)
• thereby corrupting the return address to point to code an attacker

provides, to gain control of the program
19

Devil’s Bargain with Dynamic Types?

OK, dynamically typed languages are type-safe
… but only by trading compile-time errors for (well-
defined) run-time exceptions!
• I’d prefer to know that no exceptions will be possible

Can’t we build a better static type system?
• I.e., that that aims to eliminate all language-level run-time errors

and is also complete?
Yes, we can build more precise static type systems, but
never a perfect one
• To do so would be undecidable!

20

Fancy Types

Lots of ideas over the last few decades aimed at
improving the precision of type systems
• So they can rule out more run-time errors

Generic types (parametric polymorphism)
• for containers and generic operations on them

Subtyping
• for interchanging objects with related shapes

Dependent types can include data in types
• Instead of int list, we could have int n list for a list of n

elements. Hence hd has type int n list where n>0.

21

Type Systems with Fancy Types
OCaml’s type system has types for
• generics (polymorphism), objects, curried functions, …
• all unsupported by C

Haskell’s type system has types for
• Type classes (qualified types), effect-isolating monads, higher-

rank polymorphism, …
• All unsupported by OCaml

More precision ensures more run-time errors prevented,
with less contorted programs: Good!
• But now the programmer must understand (and sometimes do)

more ..
22

Quiz 3

Which of the following is well-defined in OCaml, but is not
well-typed?

A. let f g = (g 1, g “hello”) in f (fun x -> x)
B. List.map (fun x -> x + x) [1; “hello”]
C. let x = 0 in 5 / x
D. let x = Array.make 1 1 in x.(2)

23

Quiz 3

Which of the following is well-defined in OCaml, but is not
well-typed?

A. let f g = (g 1, g “hello”) in f (fun x -> x)
B. List.map (fun x -> x + x) [1; “hello”]
C. let x = 0 in 5 / x
D. let x = Array.make 1 1 in x.(2)

Ill-typed and
ill-definedwell-typed and

well-defined
well-typed and
well-defined

Functions as arguments cannot
be used polymorphically

24

Perfect Type System? Impossible

No type system can do all of following
• (1) always terminate, (2) be sound, (3) be complete
• While trying to eliminate all run-time exceptions, e.g.,

Ø Using an int as a function
Ø Accessing an array out of bounds
Ø Dividing by zero, …

Doing so would be undecidable
• by reduction to the halting problem
• Eg., while (…) {…} arr[-1] = 1;

Ø Error tantamount to proving that the while loop terminates

25

Type Checking and Type Inference

Type inference is a part of (static) type checking
• Reduces the programmer’s effort

Static types are explicit (aka manifest) or inferred
• Manifest – specified in text (at variable declaration)

Ø C, C++, Java, C#
• Inferred – compiler determines type based on usage

Ø OCaml, C# and Go (limited)

Fancier type systems may require explicit types
• Haskell considers adding a type signature your function to be

good style, even when not required

26

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now
consider arguments about which is better:

static checking or dynamic checking

27

Poll: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)
(b) dynamic type systems (e.g., Ruby, Python)

28

Claim 1: Dynamic is more convenient
Dynamic typing lets you build a heterogeneous list or return a “number
or a string” without workarounds

Ruby: a = [1,1.5]

OCaml:
type t =
Int of int

| Float of float

let a = [Int 1; Float 1.5];;

29

Claim 1: Static is more convenient
Can assume data has the expected type without cluttering code with
dynamic checks or having errors far from the logical mistake

def cube(x)
if x.is_a?(Numeric)

x * x * x
else

"Bad argument”
end

end

Ruby:

let cube x = x * x * x
(* we know x is int *)

OCaml:

30

Claim 2: Static prevents useful programs
Any sound static type system forbids programs that do nothing wrong

Ruby:
if e1 then
“lady”
else
[7,”hi”]

end

OCaml:
if e1 then “lady” else (7,”hi”)
(* does not type-check *)

31

Claim 2: But always workarounds
Rather than suffer time, space, and late-errors costs of tagging
everything, statically typed languages let programmers “tag as
needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)
OCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
| String of string
| Cons of tort * tort
| Fun of (tort -> tort)
| …

if e1 then
String "lady"

else
Cons (Int 7, String "hi")

32

Claim 3: Static catches bugs earlier
Static typing catches many simple bugs as soon as “compiled”.

• Since such bugs are always caught, no need to test for them.
• In fact, can code less carefully and “lean on” type-checker

def pow (x,y)
if y == 0 then

1
else

x * pow (y - 1)

end
end
can’t detect until run

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x * pow (y-1)

(* does not type-check *)

33

Claim 3: Static catches only easy bugs
But static often catches only “easy” bugs, so you still have to test your
functions, which should find the “easy” bugs too

def pow (x,y)
if y == 0 then

1
else

x + pow (x,(y-1))
end

end

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x + pow x (y-1)

(* oops *)

34

Claim 4: Static typing is faster

Language implementation:
• Does not need to store tags (space, time)
• Does not need to check tags (time)
• Can rely on values being a particular type, so it can perform more

optimizations
Your code:
• Does not need to check arguments and results beyond what is

evidently required

35

Claim 4: Dynamic typing is not too much
slower

Language implementation:
• Can use remove some unnecessary tags and tests despite the

lack of types
Ø While difficult (impossible) in general, it is often possible for the

performance-critical parts of a program

Your code:
• Do not need to “code around” type-system limitations with extra

tags, functions etc.

36

Claim 5: Code reuse easier with dynamic
Without a restrictive type system, more code can just be reused with
data of different types

If you use cons cells for everything, libraries that work on cons cells
are useful

Collections libraries are amazingly useful but often have very
complicated static types
• Polymorphism/generics/etc. are hard to understand, but are aiming to provide

what dynamic typing gives naturally

Etc.

37

Claim 5: Code reuse easier with static
The type system serves as “checked documentation,” making the
“contract” with others’ code easier to understand and use correctly

38

Redux: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)
(b) dynamic type systems (e.g., Ruby, Python)

39

Static vs. Dynamic: Age-old Debate
Static vs. dynamic typing is too coarse a question
• Better question: What should we enforce statically?

Ø E.g., OCaml checks array bounds, division-by-zero, at run-time

• Legitimate trade-offs

Idea: Flexible languages allowing best-of-both-worlds?
• Use static types in some parts of the program, but dynamic

checking in other parts?
Ø Called gradual typing: an idea still under active research

• Would programmers use such flexibility well? Who decides?

40

