
CMSC 330: Organization of
Programming Languages

A Brief History of Programming
Languages

CMSC330 Spring 2021

Babylon

• Founded roughly 4000 years ago
– Located near the Euphrates River, 56 miles south of

Baghdad, Iraq
• Historically influential in ancient western world
• Cuneiform writing system, written on clay tablets

– Some of those tablets survive to this day
– Those from Hammurabi dynasty (1800-1600 BC)

include mathematical calculations
• (Also known for Code of Hammurabi, an early legal code)

A Babylonian Algorithm
A [rectangular] cistern.
The height is 3, 20, and a volume of 27, 46, 40 has been excavated.
The length exceeds the width by 50.
You should take the reciprocal of the height, 3, 20, obtaining 18.
Multiply this by the volume, 27, 46, 40, obtaining 8, 20.
Take half of 50 and square it, obtaining 10, 25.
Add 8, 20, and you get 8, 30, 25
The square root is 2, 55.
Make two copies of this, adding [25] to the one and subtracting from the other.
You find that 3, 20 [i.e., 3 1/3] is the length and 2, 30 [i.e., 2 1/2] is the width.
This is the procedure.

– Donald E. Knuth, Ancient Babylonian Algorithms, CACM July 1972

The number n, m represents n*(60k) + m*(60k-1) for some k

More About Algorithms

• Euclid’s Algorithm (Alexandria, Egypt, 300 BC)
– Appeared in Elements

• See http://aleph0.clarku.edu/~djoyce/elements/bookVII/propVII2.html

– Computes gcd of two integers
let rec gcd a b =

if b = 0 then a else gcd b (a mod b)

• Al-Khwarizmi (Baghdad, Iraq, 780-850 AD)
– Al-Khwarizmi Concerning the Hindu Art of Reckoning
– Translated into Latin (in 12th century?)

• Author’s name rendered in Latin as algoritmi
• Thus the word algorithm

http://aleph0.clarku.edu/~djoyce/elements/bookVII/propVII2.html

Antikythera Mechanism

• Mechanical computer designed
to calculate astronomical
positions

• Discovered in 1900-1901
– But no one knew what it was until much later!

• Estimated construction in 150-100 BC

CMSC330 Spring 2021
http://en.wikipedia.org/wiki/File:NAMA_Machine_d%27Anticythère_1.jpg

Charles Babbage (1791–1871)

• British mathematician & mechanical engineer
• Invented concept of a programmable computer

– Partially built a Difference Engine

§ A mechanical calculator for
computing polynomials

§ Uses finite difference method
to avoid multiplication &
division

§ Never completely finished
§ Model built in 1991 at the

London Science Museum

The Analytical Engine (1837)

• Babbage described plans for an Analytical Engine
– Digital, programmable using punch cards
– Included branching, looping, arithmetic, and storage
– Memory would store 1000 numbers w/ 500 digits each
– Language similar to assembly language
– Powered by steam engine

• Partially constructed by 1910
– Used to compute a list of multiples of π

• If built, would have been 1st Turing-complete
computation device

Ada Lovelace (1815-52)

• British mathematician
– Corresponded with Babbage from 1833 onward
– In 1843, translated Italian mathematician L. Menabrea's

memoir on Babbage’s proposed Analytical Engine
– Appended notes on how to program the Analytical

Engine to calculate Bernoulli numbers
– Recognized by historians as 1st published program
– Making her world’s 1st programmer

• Ada programming language (1983)
– Imperative, object-oriented language based on Pascal
– Named in her honor

Ada Lovelace (1815-52)
• “The Analytical Engine has no pretensions whatever to

originate anything. It can do whatever we know how to
order it to perform.”

• She speculated that the Engine 'might act upon other
things besides number... the Engine might compose
elaborate and scientific pieces of music of any degree of
complexity or extent’.

• She was the first to express the potential for computers
outside mathematics.

Alonzo Church (1903-1995)

• Mathematician at Princeton Univ.
• Three key contributions:

– The lambda calculus (lectures in 1936, publ. 1941)
– Church’s Thesis

• All effective computation is expressed by recursive
(decidable) functions

– Church’s Theorem
• First order logic is undecidable

Alan Turing (1912 - 1954)
• The father of modern computer science

– Dissertation work advised by Church at Princeton
– Formulated the Turing machine (~1936)

A general abstract computer → DFA + infinite 1D tape
•Σ – A finite alphabet
•Q – a set of states
•s ∊ Q – A start state
•F ⊆ Q – The final states
•δ : Q × Σ → Q × Σ × {L, R}

– If δ(q, a) = (q', a', d), then if we’re in state q and see a on
the tape, then replace it by a', move to state q', and
move the position of the tape either left or right

– A formal definition of a computable algorithm

Early Computers

• ABC (1939-1942)
– Atanasoff and Berry Computer, at Iowa State Univ.
– First electronic digital computer

• As decided by a judge in 1973! (Invalidated ENIAC patent)

• Z3 (1945)
– Konrad Zuse, essentially isolated from everyone else
– Used Plankalkül, a sophisticated programming lang.

• But no one knew about his results, so not influential

• Harvard Mark I (1944)
– Aiken, IBM
– Electronic, used relays

CMSC330 Spring 2021

Early Computers (cont.)

• ENIAC (1946)
– Electronic Numerical Integrator and Computer
– Developed by Eckert and Mauchly at UPenn
– Electronic, general purposes
– Used vacuum tubes
– For 30 years considered the “first” electronic

computer
• Until court case gave honor to ABC
• Supposedly Eckert and Mauchley overheard Atanasoff

discussing designs for ABC

CMSC330 Spring 2021

ENIAC early photo

CMSC330 Spring 2021

Programmers Betty Jean Jennings (left) and Fran Bilas (right) operate ENIAC's main control panel

https://en.wikipedia.org/wiki/Jean_Bartik
https://en.wikipedia.org/wiki/Frances_Spence

The ENIAC Six:
Women who Programmed the ENIAC

CMSC330 Spring 2021

Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman

The First Programming Languages
• Early computers could be “programmed” by

rewiring them for specific applications
– Tedious, error prone

• John von Neumann (1903-1957)
– Three CS contributions (famous for lots of other stuff)

• von Neumann machine – the way computers are built today
– A stored program architecture

» Program stored in memory as data, so can be
modified

– (Unclear that he actually invented this...)
• “Conditional control transfer” – if and for statements

– Allows for reusable code, like subroutines
• Merge sort algorithm

Pseudocodes (Assembly Interpreter)

• Short Code (1949)
– John Mauchly
– Interpreted instructions

• E.g., X0 = sqrt(abs(Y0)) becomes 00 X0 03 20 06 Y0
– 06 = abs, 20 = sqrt, 03 = assignment

– But needed to translate by hand
• A-0 Compiler (1951; Grace Murray Hopper)

– Translated symbolic code into machine code
• Sounds like an assembler...

– Assigned numbers to routines stored on tape
• Which would then be retrieved and put in memory

Eckert and Mauchly

FORTRAN (1954 - 1957)
• FORmula TRANslator
• Developed at IBM by John Backus et al

– Aimed at scientific computation
– Computers slow, small, unreliable

• So FORTRAN needed to produce efficient code

• Features (FORTRAN I)
– Variable names (up to 6 chars)
– Loops and Arithmetic Conditionals

• IF (E) 100, 200, 300
– Go to 100 if E is negative, 200 if zero, 300 if positive

– Formatted I/O
– Subroutines

Writing FORTRAN Programs
• Programs originally entered on punch cards

– Note bevels on top-left corner for orientation
– First five columns for comment mark or statement number
– Each column represents one character
– Letter: 2 punches: A=12,1 B=12,2 …, Z=0,9

Punch Card Programming
• Not interactive!

– Feed the deck into the machine
• Or give it to someone to put in

– Eventually get back printout with code and output
• Could take a couple of hours if machine busy
• Student jobs typically took overnight to run

– Only to find a syntax error!

• Long test-debug cycle
– Debugging by hand critical to not wasting time

• Don’t want to wait several hours to find you made a typo

• What happens if you drop your deck of cards?
– Could put sequence number in corner for ordering
– Hard to maintain this as you keep modifying program

Example (FORTRAN 77)

C A PROGRAM TO COMPUTE MULTIPLICATION TABLES
PROGRAM TABLES
DO 20 I = 2,12
PRINT *,I,’ TIMES TABLE’
DO 10 J = 1,12

10 PRINT *,I,’ TIMES’,J,’ IS’,I*J
20 CONTINUE

END

Source: University of Strathclyde Computer Centre, Glasgow, Scotland

C = “comment” All-caps

Cols 1-6 for
comment
or stmt
label

For loop; I goes from 2 to 12
in increments of 1

End of program

FORTRAN Parsing Example
• Blanks don’t matter in FORTRAN

– And identifiers can have numbers in them
• Consider parsing the following two statements

– The first is a loop
– The second is an assignment of 2.12 to “DO20I”
– Notice that we need many characters of lookahead to tell the

difference between the two for a parser
– The statement: DO 3 I = 1.3 may have caused the failure of

Mariner I to Venus.* (FORTRAN assumed DO3I= 1.3, which is
legal, but not the loop that was desired.)

• *This story seems to be apocryphal, but is printed in many textbooks

DO 20 I = 2,12
DO 20 I = 2.12

FORTRAN Today
• Success of FORTRAN led to modern compilers
• Up to FORTRAN 95

– Modern version of the original language
– Includes pointers, recursion, more type checking, dynamic allocation,

modules, etc.
• Only (?) major language with column-major arrays
• Still popular for scientific computing applications

– FORTRAN compilers produce good code
– Language has an efficient array structure

• C has pointers, which can hurt optimization
– FORTRAN has arrays, but compiler can assume that if x and

y are arrays then x and y are unaliased
• Java interpreted or JIT’d, and uses dynamic dispatch heavily

COBOL (1959)

• COmmon Business Oriented Language
– Project led by Hopper (again!)

• Design goals
– Look like simple English (but doesn’t read like it!)
– Easy to use for a broad base
– Notice: not aimed at scientific computing

• Aimed at business computing instead, very successfully

• Key features
– Macros
– Records
– Long names (up to 30 chars), with hyphen

COBOL Example (Part 1)

$ SET SOURCEFORMAT"FREE”
IDENTIFICATION DIVISION.
PROGRAM-ID. Iteration-If.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.
01 Operator PIC X VALUE SPACE.

Source: http://www.csis.ul.ie/COBOL/examples/conditn/IterIf.htm

Program data
(variables)

Single-digit number

Character

Initial value

Level number; can be used
to express hierarchy (records) The source of Y2K bugs

COBOL Example (Part 2)
PROCEDURE DIVISION.
Calculator.

PERFORM 3 TIMES
DISPLAY "Enter First Number : " WITH NO ADVANCING
ACCEPT Num1
DISPLAY "Enter Second Number : " WITH NO ADVANCING
ACCEPT Num2
DISPLAY "Enter operator (+ or *) : " WITH NO ADVANCING
ACCEPT Operator
IF Operator = "+" THEN

ADD Num1, Num2 GIVING Result
END-IF
IF Operator = "*" THEN

MULTIPLY Num1 BY Num2 GIVING Result
END-IF
DISPLAY "Result is = ", Result

END-PERFORM.
STOP RUN.

Iteration

Data Layout

• Variables have fixed position in memory
– Same with early FORTRAN compilers

• Advantages?
– Compilers easier to write
– Efficient at runtime

• Disadvantages?
– No dynamic memory alloc (i.e., no data structures)
– No recursive functions

Skynet Runs Cobol

CMSC330 Spring 2021

COBOL Today

• Was a DoD requirement at one time
– Important element of its success

• Still used today
– #36 on IEEE list

• http://spectrum.ieee.org/static/interactive-the-top-
programming-languages

– Legacy mainframe applications
– New standard in 2002
– Language has been updated for new features

• Object-oriented?!
• Unicode support
• XML support

LISP (1958)

• LISt Processing
• Developed by John McCarthy at MIT

– Designed for AI research

• Key ideas:
– Symbolic expressions instead of numbers
– Lists, lists, lists
– Functions, functions, functions

• Compose simpler functions to form more complex functions
• Recursion

– Garbage collection (mark/sweep)

LISP Code

• Implemented on IBM 704 machine
– Machine word was 36 bits

• Two 15-bit parts, “address” and “decrement,” distinguished
• car = “Contents of the Address part of Register”
• cdr = “Contents of the Decrement part of Register”

• Invented maplist function
– Same as map function in OCaml

• Used lambda notation of Church for functions

(defun factorial (n)
(cond ((zerop n) 1)

(t (times n (factorial (sub1 n)))))

LISP Code as Data

• LISP programs are S-expressions, too
– Which represent lists

• So LISP programs can easily manipulate LISP
programs
– Just do list operations to put programs together
– Probably the first high-level language with this

feature

LISP Machines (Later Development)

• LISP is a fairly high-level language
– Small pieces of LISP code can require a fair amount

of time to execute
– Running a LISP program could kill a timeshared

machine

• Idea: design a machine specifically for LISP
– Well-known examples are from Symbolics

• Everything on the machine written in LISP
– Killed by the PC revolution

Scheme (1975)

• Dialect of LISP

• Developed buy Guy L. Steele and Gerald Jay
Sussman
– Guy Steele was heavily involved in Java

• Goal: Minimalist language
– Much smaller than full LISP
– First dialect of LISP to include static scoping
– Used by people experimenting with languages

Steele and Sussman

LISP Today
• LISP still used in AI programming

– Common LISP is standard version

• Scheme still popular in academics
– Good vehicle for teaching introductory programming

• The TeachScheme! Project
• Origins of CMSC131A, piloted at UMD

– Racket language started from Scheme

• Clojure
– Niche LISP dialect focusing on concurrent

programming

Algol (1958)

• ALGOrithmic Language
– Designed to be a universal language
– For scientific computations

• Never that popular, but extremely important
– Led to Pascal, C, C++, and Java

• “Algol-like” languages
– Had formal grammar (Backus-Naur Form or BNF)
– Algol 60 added block structures for scoping and

conditionals
– Imperative language with recursive functions

Example Code
procedure Absmax(a) Size:(n, m) Result:(y)

Subscripts:(i, k);
value n, m; array a;
integer n, m, i, k; real y;

comment The absolute greatest element of the
matrix a, of size n by m is transferred to
y, and the subscripts of this element to i
and k;
begin integer p, q;

y := 0; i := k := 1;
for p:=1 step 1 until n do
for q:=1 step 1 until m do

if abs(a[p, q]) > y then
begin y := abs(a[p, q]);
i := p; k := q
end

end Absmax Source: http://en.wikipedia.org/wiki/ALGOL

Algol 68

• Successor to Algol 60
– But bloated and hard to use
– And very hard to compile

• E.g., variable names can include blanks!

• Included many important ideas
– User-defined types
– Code blocks that return the value of the last expr
– Struct and union
– Parallel processing (in the language)

Example Code

BEGIN MODE NODE = STRUCT (INT k, TREE smaller, larger),
TREE = REF NODE;

TREE empty tree = NIL;

PROC add = (REF TREE root, INT k) VOID:
IF root IS empty tree
THEN root := HEAP NODE := (k, NIL, NIL)
ELSE IF k < k OF root

THEN add (smaller OF root, k)
ELSE add (larger OF root, k)
FI

FI;
END Source: http://www.xs4all.nl/~jmvdveer/algol68g-mk8/doc/examples/quicksort.a68.html

User-defined types

Identifier w/blank

Malloc

Field access

Algol Discussion

• Good points:
– Standard for writing algorithmic pseudocode
– First machine-independent language
– C, C++, Java, etc. all based on it
– Used BNF to describe language syntax

• Bad points:
– Never widely used; Some success in Europe
– Hard to implement
– FORTRAN much more popular
– Not supported by IBM

APL (early 1960s)

• A Programming Language
– Developed by Kenneth Iverson at Harvard
– Goal is a very concise notation for mathematics

• Focuses on array manipulation, interactive environment
– Was very popular

• In 1969, 500 attendees at APL conference
• Still some devotees

• Notable features
– Programs evaluated right-to-left, No precedence of

operators
– Fast execution of array operations
– Required special keyboard to enter programs

Example Code

• Finds prime numbers from 1 to R
– ιR creates vector containing 1..R
– 1↓ drops first element
– R← assigns result to R
– R o.× R computes (outer) product 2..R × 2..R
– R ∊ produces vector the same size as R with 1 in position i if i is

in R o.× R
• I.e., if there is a product of two numbers equal to i

– ~ negates the resulting vector; call it S
– / returns a vector of items in R that have 1’s in same pos in S

Source: http://en.wikipedia.org/wiki/APL_programming_language

(~ R ∊ R o.× R) / R←1↓ιR

PL/I (1964)
• One language to replace FORTRAN and COBOL

– Went along with System/360, one mainframe to replace
mainframes for science, business

– Syntax based on ALGOL
• Famous parsing problems

IF THEN THEN THEN = ELSE; ELSE ELSE = THEN
– No reserved words. Keywords could be used as variable names

• In the end, not that successful
– Compilers hard to write

• Not just because of parsing; language is complex
• Inconsistency. 1/3+10 is an illegal expression. (Overflow!)

– Looked down on by both camps (science, business)

BASIC (1964)

• Beginner’s All purpose Symbolic Instruction Code
– John Kemeny and Thomas Kurtz (Dartmouth)

• Kemeny’s PhD advised by Church
• Kemeny also developed the first time-sharing system

– Multiple users could access shared mainframe as if they
were the only user

• Goals of BASIC:
– Easy to use for beginners
– Stepping-stone to more powerful languages
– User time is more important than computer time
– First program run May 1, 1964 at 4:00 am

Example (Applesoft BASIC)
10 INPUT "What is your name: "; U$
20 PRINT "Hello "; U$
25 REM
30 INPUT "How many stars do you want: "; N
35 S$ = ""
40 FOR I = 1 TO N
50 S$ = S$ + "*”
55 NEXT I
60 PRINT S$
65 REM
70 INPUT "Do you want more stars? "; A$
80 IF LEN(A$) = 0 THEN GOTO 70
90 A$ = LEFT$(A$, 1)
100 IF (A$ = "Y") OR (A$ = "y") THEN GOTO 30
110 PRINT "Goodbye ";
120 FOR I = 1 TO 200
130 PRINT U$; " ";
140 NEXT I
150 PRINT Source: http://en.wikipedia.org/wiki/BASIC_programming_language

Lines
numbered

Variables

Comment

Loop

Goto
common

BASIC Today

• Still an extremely popular language
– Microsoft Visual Basic convenient language for

writing basic Windows applications
• Lots of libraries available
• Includes development environment for gui apps

• Modern dialects of BASIC are more structured
– Eliminate most or all line numbers
– Discourage use of “goto”
– BASIC today is a one-word oxymoron

CMSC330 Spring 2021

Pascal (1971)

• Developed by Niklaus Wirth
– A response to complaints about Algol 68

• Teaching tool; not meant for wide adoption
– Was popular for about 20 years
– Best features of COBOL, FORTRAN, and ALGOL
– And used lowercase!

• Lowercase not introduced into ASCII until 1967
• Even into 80’s some mainframes were 6-bit, no lowercase

• Pointers improved
• Case statement
• Type declarations
CMSC330 Spring 2021

Interesting Pascal Features

• Enumeration and subrange types
type day = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
type weekday = Mon..Fri;
type day_of_month = 1..31;

– Key features:
• Safe; values will always be within range (compare to C)

– May require dynamic checks

• Array types with arbitrary ranges
var hours : array[Mon..Fri] of 0..24;
var M : array[Mon..Fri] of array[char] of real;
for day := Mon to Fri do

M[day][‘e’] := 0.0001;
Source: http://www.augustana.ca/~mohrj/courses/common/csc370/lecture_notes/pascal.html

Interesting Pascal Features (cont.)

• Set types
var S, T : set of 1..10;
S := [1, 2, 3, 5, 7];
T := [1..6];
U := S + T; { set union }
if 6 in S * T then ... { set intersection }

– (Note comments in {}’s)

Source: http://www.augustana.ca/~mohrj/courses/common/csc370/lecture_notes/pascal.html

Pascal Today

• Kernighan’s Why Pascal is Not My Favorite
Programming Language
– No polymorphism on types, including arrays
– No separate compilation (although every

implementation created a module structure)
– No short-circuiting && and ||
– Weak run-time environment
– No escape from type system

• Most of these problems fixed
– But differently in different compilers
– Not much used today

CMSC330 Spring 2021

C (1972)

• Dennis Ritchie at Bell Labs
– Ancestors B and BCPL
– Designed to build Unix

• OSes previously written in Assembly, so platform dependent

• Two key features
– Arrays and pointers closely related

• int *p and int p[] are the same
• Consequence of low-level view of memory

– Type system lets you use values at any time
• Type casts are necessary
• Early compilers didn’t complain about all sorts of things

– Like assigning integers to pointers or vice-versa

Thompson and Ritchie

Simula (1965)

• Developed at Norwegian Computing Center
– By Ole-Johan Dahl and Kristen Nygaard
– Goal was to simulate complex systems
– Later used as a general purpose language

• Key features
– Classes and objects
– Inheritence and subclassing
– Pointer to objects
– Call by reference
– Garbage collection
– Concurrency via coroutines

Example

Source: http://www.stanford.edu/class/cs242/slides/2004/simula-smalltalk.pdf

class Point(x,y); real x,y;
begin
boolean procedure equals(p); ref(Point) p;
if p =/= none then
equals := abs(x - p.x) + abs(y - p.y) < 0.00001

real procedure distance(p); ref(Point) p;
if p == none then error else
distance := sqrt((x - p.x)**2 + (y - p.y)**2);

end ***Point***

p :- new Point(1.0, 2.5);
q :- new Point(2.0, 3.5);
if p.distance(q) > 2 then ...

Parameter types

null pointer

Field accessReturn
value

Pointer assignment

Smalltalk (Early 1970s)

• Developed by Alan Kay et al at Xerox
PARC
– Goal: Build a small, portable computer

• Remember, computers required separate rooms then

• Key ideas
– Object oriented programming ideas from Simula
– Everything is an object
– Intended for non-experts, especially children
– Language and language editing environment

integrated into operating system

Example

Example (cont.)

Objective-C (early 1980s)

• Created by Brad Cox & Tom Love
– Influenced by Smalltalk
– Popularized by NeXT, acquired by Apple

• Used in Mac OS X, iOS development

• Imperative, object-oriented language
– Implemented as C preprocessor
– Strict superset of C

• Differences from Java
– Send messages to objects (vs. calling object method)

• Equivalent to dynamic typing of objects
• Messages accepted at runtime, may be forwarded to other obj

@interface myInt { }
+(int)str2i:(NSString)s;
-(NSString)int2s:(int)i;
@end

@implementation myInt
+(int)str2i:(NSString)s
{

[o f:s]
}
-(NSString)int2s :(int)i;
{

NSString *str = @"hello";
str = [str stringByAppendingString:@" world"];

}
@end

class myInt {
static int str2i(String s){
o.f(s);

}
String int2s(int i){
String str = “hello”;
str = str + “ world”;

}
}

Objective-C Example / Equiv. Java Code

Parameter type
Method return type
Method invocation

C++ (1983)

• Bjarne Stroustrup, Bell Labs
• Began as “C with Classes” (~1980)

– A preprocessor for C code
– Added Simula-like classes

• Why use C as a base language?
– C is flexible – can write any kind of program
– C is efficient – can efficiently use hardware
– C is available – C compilers exist for most hardware
– C is portable – Porting requires some effort, but doable

[This and remaining quotes from Stroustrup, The Design and Evolution of C++]

C++ Example

#include <iostream>
int main ()
{

int n;
cout << "Enter number > ";
cin >> n;
while (n>0) {

cout << n << ", ";
--n;

}
cout << “Done!\n";
return 0;

} Overloaded
operators

Stroustrup’s Language-Technical Rules

• No implicit violations of the static type system
• Provide as good support for user-defined types

as for built-in types
• Locality is good

– Abstraction and modularity
• Avoid order dependencies
• If in doubt, pick the variant of a feature that is

easiest to teach
• Syntax matters (often in perverse ways)
• Preprocessor usage should be eliminated
CMSC330 Spring 2021

STL – Standard Template Library (1994)

• C++ library of
– Container classes, algorithms, iterators
– Inspired Java class libraries

• A generic library
– Components are parameterized using templates
– Java didn’t get generics until version 1.5 (2004)

• Example
vector<int> v(3); // vector of 3 int elements
v[0] = 7; // overloading [] operator

Very Brief Comparison to Java

• C++ compiled, Java interpreted/JIT’d
– C++ programs tend to be faster, but gap narrowing

• C++ does not guarantee safety
– But makes an effort to be better than C

• C++ is much more complicated than Java
– Copy constructors, assignment operator overloading,

destructors, etc.

• Today, C++ still used to build big, commercial
applications
– But Java making inroads because of big library, safety

C# (2001)

• Anders Hejlsberg at Microsoft
• Microsoft’s competitor to Java (developed @ Sun)
• Imperative, object-oriented language

– Syntax based on C++
– Static typing, strongly typed
– Hybrid of C++ and Java

• Differences from Java
– Allows restricted pointers
– User defined value types (e.g., C structs)
– SQL-like language integrated queries

C# Example
using System;
class Employee { }
class Contractor : Employee { }
class CastExample
{

public static void Main ()
{

Employee e = new Employee();
Console.WriteLine("e = {0}",

e == null ? "null" : e.ToString());
Contractor c = e as Contractor ;
Console.WriteLine("c = {0}",

c == null ? "null" : c.ToString());
}

}

Swift (2014)

• Chris Lattner at Apple
• Successor to Objective-C

– Also influenced by Rust, Haskell, Ruby, Python, C#
– Described as “Objective-C without the C”
– Code can be mixed with C, C++, Objective-C

• Differences from Objective-C
– Does not create pointers by default
– Uses Java-style syntax for calling methods
– Includes features from Objective-C and other PLs

• Categories, closures, 1st class functions, type inference, etc.
• But with cleaner syntax

func str2i(s:String) -> int
{

o->f(i)
}
func int2s(i:int) -> String
{
var str = "hello"
str += " world"

let int: x = 1
var y = 2

}

Swift Example

Parameter type
Method return type

Method invocation

Constant value
Explicit type

Variable value
Type inference

Quiz: Which Do You Prefer?

CMSC330 Spring 2021

A. Object Oriented
B. Functional
C. Imperative
D. Scripting/Dynamic

Quiz: Which Do You Prefer?

CMSC330 Spring 2021

A. Object Oriented
B. Functional
C. Imperative
D. Scripting/Dynamic

A. Statically Typed
B. Dynamically Typed

Quiz: Which Do You Prefer?

CMSC330 Spring 2021

A. Object Oriented
B. Functional
C. Imperative
D. Scripting/Dynamic

A. Statically Typed
B. Dynamically Typed

A. Ruby
B. OCaml
C. Java
D. Rust

Quiz: Which Do You Prefer?

CMSC330 Spring 2021

A. Object Oriented
B. Functional
C. Imperative
D. Scripting/Dynamic

A. Statically Typed
B. Dynamically Typed

A. Ruby
B. OCaml
C. Java
D. Rust

Have a great summer!

Programming Language Popularity Metrics

• Web references
– TIOBE Programming Community Index

(# references in Google, MSN, Yahoo, YouTube)
– Stack Overflow (Question & answer site for programmers)

• Source code
– SourceForge (Open source projects)
– GitHub (Hosting service for software development projects)

• Computer book sales
– O’Reilly (publishes programming language books)

TIOBE (Web References)

TIOBE (Web References)

TIOBE (Web Hits)

CMSC330 Spring 2021

TIOBE – Long Term Popularity

CMSC330 Spring 2021

Interesting Trends

• C, C++, Java most popular
– For last 15 years

• Objective C way up
– Wasn’t even in the top 20 in 2008
– Used for programming Apple iOS devices

• Four scripting languages in top 10
– PHP, Python, JavaScript, Perl

• F# is only functional language in top 20
– Multi-paradigm functional language w/ type inference

CMSC330 Spring 2021

Summary

• Many programming languages
• Wide variety of language features

– Evaluated through trial and error
• Languages you should now know

CMSC330 Spring 2021

Language Paradigm Type
System

Type
Checking

Variable
Declarations

Type
Declarations

Java OO/Imp Strong Static Explicit Explicit
C Imperative Weak Static Explicit Explicit

Ruby OO/Scripting Strong Dynamic Implicit None
OCaml Functional Strong Static Explicit Inferred
Rust Imp/Func Strong Static Explicit Expl/Infer

GitHub (Repositories)

• Top repositories created as of Oct 2013
Rank Language #

1 JavaScript 264K
2 Ruby 219K
3 Java 158K
4 PHP 114K
5 Python 95K
6 C++ 78K
7 C 68K
8 Objective-C 36K
9 C# 32K

10 Shell 28K

Rank Language #
11 CSS 18K
12 Perl 15K
13 CoffeeScript 11K
14 VimL 8K
15 Scala 7K
16 Go 7K
17 Prolog 6K
18 Clojure 5K
19 Haskell 5K
20 Lua 4K

GitHub (New Repositories 2008-2013)

CMSC330 Spring 2021

GitHub (New Users, Issues, Repositories)

CMSC330 Spring 2021

Combining Code & Web References

• From langpop.corger.nl
• Combined metric based on

– GitHub
• Lines of code modified

– StackOverflow
• # tags & references in posts

CMSC330 Spring 2021

CMSC330 Spring 2021

GitHub

Stack
Overflow

GitHub + StackOverflow

• Top 15 languages as of March 2014
Rank Language Ratings

1 C# 15.39%
2 Java 15.05%
3 Javascript 14.56%
4 PHP 13.7%
5 Python 7.06%
6 C++ 6.91%
7 CSS 5.16%
8 Objective-C 4.42%
9 C 3.33%

10 Ruby 2.49%

Rank Language Ratings
11 XML 2.15%
12 R 1.3%
13 Perl 0.89%
14 Matlab 0.76%
15 Shell 0.69%

…
28 F# 0.15%
31 Visual Basic 0.14%
34 Prolog 0.10%
40 OCaml 0.06%

O’Reilly (Computer Book Sales)

O’Reilly (Book Sales 2011 vs. 2010)

